Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium

Adamantia Agalou A , Andreas Roussis A B and Herman P. Spaink A C
+ Author Affiliations
- Author Affiliations

A Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands.

B Current address: Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.

C Corresponding author. Email: spaink@rulbim.leidenuniv.nl

Functional Plant Biology 32(10) 881-890 https://doi.org/10.1071/FP05090
Submitted: 18 April 2005  Accepted: 2 June 2005   Published: 5 October 2005

Abstract

In the Arabidopsis genome there are three highly conserved homologues of the mammalian 56-kD selenium-binding protein (SBP). To study the function of SBP in this model plant, we used a transgenic approach by constitutively overexpressing and down-regulating the endogenous Atsbp1 gene. In the latter case, we employed both a conventional antisense method and gene silencing by intron-containing hairpin RNAs. Atsbp1-overexpressing and silenced plants were phenotypically normal, under standard growth conditions, when compared with wild type plants. Transgenic plants exhibited different growth responses to exogenously supplied selenite, which correlated with the expression levels of Atsbp1. Plants with increased Atsbp1 transcript levels showed enhanced tolerance to selenite, while plants with reduced levels were more sensitive. Our results indicate that, although Atsbp1 does not play a detectable role in the regulation of developmental processes under normal growth conditions, it appears to be involved in processes controlling tolerance of Arabidopsis to selenium toxicity.

Keywords: Arabidopsis, selenium-binding protein, selenium toxicity.


Acknowledgments

We thank Dr Renze Heidstra (Utrecht University) and Dr Adam Vivian-Smith (Leiden University) for their help in phenotypic characterisation of transgenic plants. Adamantia Agalou was supported from the State Scholarships Foundation of Greece (IKY).


References


Bansal MP, Oborn CJ, Danielson KG, Medina D (1989) Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis 10, 541–546.
PubMed |
open url image1

Bansal MP, Mukhopadhyay T, Scott J, Cook RG, Mukhopadhyay R, Medina D (1990) DNA sequencing of a mouse liver protein that binds selenium: implications for selenium’s mechanism of action in cancer prevention. Carcinogenesis 11, 2071–2073.
PubMed |
open url image1

Banuelos GS (2001) The green technology of selenium phytoremediation. BioFactors 14, 255–260.
PubMed |
open url image1

Banuelos GS (2002) Irrigation of broccoli and canola with boron- and selenium-laden effluent. Journal of Environmental Quality 31, 1802–1808.
PubMed |
open url image1

Banuelos GS, Ajwa HA, Wu L, Guo X, Akohoue S, Zambrzuski S (1997) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicology and Environmental Safety 36, 282–287.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Brown T, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biological Reviews 57, 59–84. open url image1

Burnell J (1981) Selenium metabolism in Neptunia amplexicaulis. Plant Physiology 67, 316–324. open url image1

Burnell J, Shrift A (1979) Cysteinyl-tRNA synthetase from Astragalus species. Plant Physiology 63, 1095–1097. open url image1

Chaudiere J, Courtin O, Leclaire J (1992) Glutathione oxidase activity of selenocystamine: a mechanistic study. Archives of Biochemistry and Biophysics 296, 328–336.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36, 4061–4066.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735–743.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Combs GF, Combs SB (1984) The nutritional biochemistry of selenium. Annual Review of Nutrition 4, 257–280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Den Dulk-Ras, A ,  and  Hooykaas, P (1995). Electroporation of Agrobacterium tumefaciens. In ‘Methods in molecular biology 55: plant cell electroporation and electrofusion protocols’. pp. 63–72. (Humana Press: Totowa, NJ)

Desikan R, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology 127, 159–172.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annual Review of Nutrition 23, 17–40.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Flemetakis E, Agalou A, Kavroulakis N, Dimou M, Martsikovskaya A, Slater A, Spaink HP, Roussis A, Katinakis P (2002) Lotus japonicus gene Ljsbp is highly conserved among plants and animals and encodes a homologue to the mammalian selenium-binding proteins. Molecular Plant–Microbe Interactions 15, 313–322.
PubMed |
open url image1

Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben Hayyim G (2002) A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. Journal of Biological Chemistry 277, 25983–25991.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gladyshev VN, Kryukov GV (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. BioFactors 14, 87–92.
PubMed |
open url image1

Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hatzfeld Y, Cathala N, Grignon C, Davidian JC (1998) Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells. Regulation of ATP sulfurylase and SO4 2– transport activities. Plant Physiology 116, 1307–1313.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Haygarth, P (1994). Global importance and global cycling of selenium. In ‘Selenium in the environment’. pp. 1–28. (Marcel Dekker: New York)

Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Archives of Biochemistry and Biophysics 122, 164–173.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Reports 5, 538–543.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300, 1439–1443.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lacourciere GM, Levine RL, Stadtman TC (2002) Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. Proceedings of the National Academy of Sciences USA 99, 9150–9153.
Crossref | GoogleScholarGoogle Scholar | open url image1

Läuchli A (1993) Selenium in plants: uptake, functions and environmental toxicity. Botanica Acta 106, 455–468. open url image1

Liu X, Baird W (2003) Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Science 43, 678–687. open url image1

Masson J, Paszkovski J (1992) The culture response of Arabidopsis thaliana protoplasts is determined by the growth conditions of the donor plants. The Plant Journal 2, 829–833. open url image1

Mayland, H (1994). Selenium in plant and animal nutrition. In ‘Selenium in the environment’. pp. 29–46. (Marcel Dekker: New York)

McCourt P, Keith K (1998) Sterile techniques in Arabidopsis. Methods in Molecular Biology 82, 13–17.
PubMed |
open url image1

Memelink, J , Swords, K , Staehelin, L ,  and  Hoge, J (1994). Southern, northern and western blot analysis. In ‘Plant molecular biology manual’. pp. F1–F23. (Kluwer Academic Publishers: Dordrecht)

Meyer Y, Verdoucq L, Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends in Plant Science 4, 388–394.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nakamuro K, Okuno T, Hasegava T (2000) Metabolism of selenoamino acids and contribution of selenium methylation to their toxicity. Journal of Health Science 46, 418–421. open url image1

Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol / selenol methyltransferases. Role in selenium tolerance and evolutionary relation. Journal of Biological Chemistry 274, 5407–5414.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO Journal 21, 3681–3693.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ogasawara Y, Lacourciere GM, Ishii K, Stadtman TC (2005) Characterization of potential selenium-binding proteins in the selenophosphate synthetase system. Proceedings of the National Academy of Sciences USA 102, 1012–1016.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiology 131, 1250–1257.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pilon-Smits EAH, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiology 119, 123–132.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Price N, Thompson P, Harrison P (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology 23, 1–9. open url image1

Sawada K, Tokuda L, Shinmyo A (2003) Characterization of the rice blast fungal elicitor-responsive gene OsSBP encoding a homolog to the mammalian selenium binding proteins. Plant Biotechnology 20, 177–181. open url image1

Sawada K, Hasegawa M, Tokuda L, Kameyama J, Kodama O, Kohchi T, Yoshida K, Shinmyo A (2004) Enhanced resistance to blast fungus and bacterial blight in transgenic rice constitutively expressing OsSBP, a rice homologue of mammalian selenium-binding proteins. Bioscience, Biotechnology, and Biochemistry 68, 873–880.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences USA 97, 11655–11660.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shrift A (1969) Aspects of selenium metabolism in higher plants. Annual Review of Plant Physiology 20, 475–494.
Crossref | GoogleScholarGoogle Scholar | open url image1

Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radical Biology & Medicine 17, 45–64.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Spallholz JE (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomedical and Environmental Sciences 10, 260–270.
PubMed |
open url image1

Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquatic Toxicology 57, 27–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Spallholz JE, Shriver BJ, Reid TW (2001) Dimethyldiselenide and methylseleninic acid generate superoxide in an in vitro chemiluminescence assay in the presence of glutathione: implications for the anticarcinogenic activity of l-selenomethionine and l-Se-methylselenocysteine. Nutrition and Cancer 40, 34–41.
Crossref | l
-selenomethionine and l-Se-methylselenocysteine.&journal=Nutrition and Cancer&volume=40&pages=34-41&publication_year=2001&author=TW%20Reid&hl=en&doi=10.1207/S15327914NC401_8" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Susi P, Hohkuri M, Wahlroos T, Kilby NJ (2004) Characteristics of RNA silencing in plants: similarities and differences across kingdoms. Plant Molecular Biology 54, 157–174.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tagmount A, Berken A, Terry N (2002) An essential role of S-adenosyl-l-methionine:l-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-l-selenium-methionine, the precursor of volatile selenium. Plant Physiology 130, 847–856.
Crossref | l-methionine:l-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-l-selenium-methionine, the precursor of volatile selenium.&journal=Plant Physiology&volume=130&pages=847-856&publication_year=2002&author=N%20Terry&hl=en&doi=10.1104/pp.001693" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed | open url image1

Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 51, 401–432.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2 / IAA3 inhibits auxin-regulated gene expression. The Plant Cell 14, 301–319.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van Mantgem PJ, Wu L, Banuelos GS (1996) Bioextraction of selenium by forage and selected field legume species in selenium-laden soils under minimal field management conditions. Ecotoxicology and Environmental Safety 34, 228–238.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vieira J, Messing J (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100, 189–194.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang Y, Bock A, Neuhierl B (1999) Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. BioFactors 9, 3–10.
PubMed |
open url image1

Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT , et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal 27, 581–590.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition 21, 223–232.
PubMed |
open url image1

Wilber CG (1980) Toxicology of selenium: a review. Clinical Toxicology 17, 171–230.
PubMed |
open url image1

Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development 16, 3100–3112.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiology 134, 420–431.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1