Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Photosynthetic activity of Lolium perenne as a function of endophyte status and zinc nutrition

Fabien Monnet A C , Nathalie Vaillant B , Adnane Hitmi B and Huguette Sallanon A
+ Author Affiliations
- Author Affiliations

A UMR 408, Qualité et Sécurité des Aliments d’Origine Végétale, Faculté des Sciences, Université d’Avignon et Pays de Vaucluse 33, rue Louis Pasteur, F-84029 Avignon, France.

B Laboratoire de Biotechnologie, Environnement-Santé, Faculté des Sciences, Université d’Auvergne 100, rue de l’Égalité, F-15000 Aurillac, France.

C Corresponding author. Email: fabien.monnet@univ-avignon.fr

Functional Plant Biology 32(2) 131-139 https://doi.org/10.1071/FP04129
Submitted: 13 July 2004  Accepted: 11 November 2004   Published: 24 February 2005

Abstract

Grass infection by endophyte fungi can confer host resistance to different types of stress, but limited evidence is available on the related effects on the photosynthetic mechanism of the grasses. Zinc has direct and indirect effects on this mechanism and is one of the more important environmental pollutants. To measure whether photosynthesis of the host plant is affected by fungal infection when endophyte-free and endophyte-infected grasses contain similar excess zinc concentrations in their leaves, two batches of Lolium perenne L. cv. Apollo plants were established, one batch was infected with Neotyphodium lolii, the other was not. Both batches were then treated for 8 d with a nutrient solution containing 0, 1, 5, 10 or 20 mm ZnSO4. The increase in zinc concentration induced some reduction in photosystem II (PSII) activity but not enough to account for the total drop in the net photosynthetic rate. Endophyte fungus favoured maintenance of the PSII activity, but did not significantly modify the net photosynthesis and similar zinc concentration levels were observed in leaves of both types of plant. Interactive effects of zinc and light induced less photodamage to the PSII of the host, which is able to react to an increase in photon flux density (PFD). In endophyte-free plants, the reaction centre contributed more than antenna complexes to energy dissipation. In endophyte-infected plants, the quenching of the reaction centre and antenna complexes rose simultaneously and at a constant rate, as zinc concentrations increased.

Keywords: heavy metal, Lolium perenne, photosystem II, photosynthesis, zinc.


Acknowledgments

We thank Professor G. Raynal (INA-PG Grignon, France) for the generous gift of L. perenne seed and to the members of the Laboratoire Départemental d’Analyses et de Recherche (Aurillac, France) for the mineral assays.


References


Amalric C, Sallanon H, Monnet F, Hitmi A, Coudret A (1999) Gas exchanges and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress. Photosynthetica 37, 107–112.
Crossref | GoogleScholarGoogle Scholar | open url image1

Aro EM, Virgin I, Anderson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta 1143, 113–134.
PubMed |
open url image1

Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agriculture Ecosystems and Environment 44, 123–141.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barak, P ,  and  Helmke, PA (1993). The chemistry of zinc. In ‘Zinc in soils and plants, developments in plants and soils sciences.’ Vol. 55, pp. 1–13. (Kluwer Academic Publishers: Dordrecht)

Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170, 489–504.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bukhov NG, Heber U, Wiese C, Shuvalov VA (2001) Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Planta 212, 749–758.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Coïc Y, Lessaint C (1973) La nutrition minérale et en eau des plantes en horticulture avancée. Review Horticultura 2316, 29–34. open url image1

Collins, JC (1981). ‘Effects of heavy metal pollution on plants’. (Applied Science Publisher: London)

Dagnelie, P (1970). ‘Théorie et méthodes statistiques: applications agronomiques.’ (Les presses agronomiques de Gembloux: Belgique)

Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology 43, 599–626.
Crossref | GoogleScholarGoogle Scholar | open url image1

Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytologist 131, 61–67. open url image1

Foy CD, Murray JJ (1998) Developing aluminium-tolerant strains of tall fescue for acid soils. Journal of Plant Nutrition 21, 1301–1325. open url image1

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92. open url image1

Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basis. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum 74, 566–574. open url image1

Latch CGM, Christensen MJ (1982) Ryegrass endophyte, incidence and control. New Zealand Journal of Agriculture Research 25, 443–448. open url image1

Lichtenthaler HK, Welburn AR (1983) Determination of total carotenoids and chlorophyll a and b leaf extracts in different solvents. Biochemical Society Transaction 603, 591–592. open url image1

Liu H, Heckman JR, Murphy JA (1996) Screening fine fescues for aluminium tolerance. Journal of Plant Nutrition 19, 677–688. open url image1

Malinowski DP, Belesky DP (1999a) Endophyte infection enhances the ability of tall fescue to utilize sparingly available phosphorus. Journal of Plant Nutrition 22, 835–853. open url image1

Malinowski DP, Belesky DP (1999b) Infection with leaf fungal endophyte Neotyphodium coemophialum increase aluminium sequestration on root surfaces of tall fescue. Journal of Plant Nutrition 22, 1335–1349. open url image1

Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science 40, 923–940. open url image1

Marschner, H (1986). ‘Mineral nutrition of higher plants.’ (Academic press: Philadelphia)

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence — a practical guide. Journal of Experimental Botany 51(345), 659–668.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Osmond, CB (1994). What is photoinhibition? Some insights from comparison of shade and sun plants. In ‘Photoinhibition: molecular mechanisms to the fields’. pp. 1–24. (Bios Scientific Publications: Oxford)

Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? Journal of Experimental Botany 46, 1351–1362. open url image1

Peltier G, Cournac L (2002) Chlororespiration. Annual Review of Plant Biology 53, 523–550.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Peterson RB, Havir EA (2000) A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta 210, 205–214.
PubMed |
open url image1

Ralph PJ, Burchett MD (1998) Photosynthesis response of Halophila ovalis to heavy metal stress. Environmental Pollution 103, 91–101.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rees D, Noctor GD, Horton P (1990) The effect of high-energy-state excitation quenching on maximum and dark level fluorescence yield. Photosynthesis Research 31, 199–211.
Crossref | GoogleScholarGoogle Scholar | open url image1

Richardson MD, Hoveland CS, Bacon CW (1989) Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Science 33, 145–149. open url image1

Siegel MR, Latch GC, Johnson MC (1987) Fungal endophytes of grasses. Annual Review of Phytopathology 25, 293–315.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Assche F, Clijsters H (1986a) Inhibition of photosynthesis by treatment of Phaseolus vulgaris with toxic concentration of zinc: effects on electron transport and photophosphorylation. Physiologia Plantarum 66, 717–721. open url image1

Van Assche F, Clijsters H (1986b) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effects on ribulose-1,5-bisphosphate carboxylase / oxygenase. Journal of Plant Physiology 125, 355–360. open url image1

West, CP (1994). Physiology and drought tolerance of endophyte-infected grasses. In ‘Biotechnology of endophyte fungi of grasses’. pp. 87–99. (CRC Press: Boca Raton)