Supplementary Material

Mercury patterns in lakes within a natural hotspot in the Southern Volcanic Zone of the Andes (Nahuel Huapi National Park, Patagonia, South America)

Carolina Soto Cárdenas^A, *Zaida Fernandez*^A, *Marina Arcagni*^B, *Andrea Rizzo*^{B,C} and *María C. Diéguez*^{A,*}

^AGrupo de Ecología de Sistemas Acuáticos a Escala de Paisaje (GESAP), Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, Universidad Nacional del Comahue–Consejo de Investigaciones Científicas y Técnicas), Pasaje Gutiérrez 1415, San Carlos de Bariloche, Río Negro, 8400, Argentina

^BLaboratorio de Análisis por Activación Neutrónica (LAAN), Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Avenida Bustillo kilómetro 9.5, San Carlos de Bariloche, Río Negro, 8400, Argentina

^cCentro Científico Tecnológico-Patagonia Norte, Consejo de Investigaciones Científicas y Técnicas, Avenida De Los Pioneros 2350, San Carlos de Bariloche, Río Negro, 8400, Argentina.

*Correspondence to: Email: <u>dieguezmc@gmail.com</u>

Supplementary Methods

To characterise the CDOM fraction of the lake DOM pools, the absorbance spectra (200–800 nm) of the filtered water samples were recorded in a UV–visible spectrophotometer, at 1-nm intervals in a 100-mm quartz cuvette.

The absorption coefficients a_{254} , a_{350} and a_{440} were calculated using the formula:

$$A\lambda = a_{\lambda} \div l$$

where *a* is the decadal absorption coefficient (m⁻¹), λ is the wavelength, A_{λ} is the absorbance at a given wavelength (arbitrary units AU), and 1 is the path length of the quartz cuvette (m). The specific UV absorbances *a*₂₅₄:DOC (SUVA; proxy for DOM aromaticity) and *a*₃₅₀:DOC (proxy for aromaticity and lignin content) were calculated following Weishaar *et al.* (2003), and Fichot and Benner (2012) respectively (L mg⁻¹ C m⁻¹). The spectral slope S₂₇₅₋₂₉₅ (nm⁻¹), typically employed as a proxy for degradation processes, was calculated by fitting the log-transformed absorbance spectral data for the interval 275–295 nm to a linear model. The S₂₇₅₋₂₉₅ is inversely correlated with the DOM molecular weight, higher S₂₇₅₋₂₉₅ values are indicative of low-molecular-weight CDOM (Helms *et al.* 2008, 2013; Stedmon *et al.* 2011; Fichot and Benner 2012; Hansen *et al.* 2016).

The FDOM fraction was characterised through excitation–emission matrices (EEMs) collected at specific excitation and emission intervals (Ex: 240–450 nm, Em: 300–600 nm), with the spectrofluorometer set with 10-nm excitation and emission slits and a scan speed of 1500 nm min⁻¹. Two fluorescence-based indices were calculated from the EEMs. The humifica index (HIX), used as a proxy for DOM humification degree, was calculated as the ratio of two regions of the emission scan (Em: 435–480 nm: Em300–345 nm) collected at an excitation of 254 nm (Ex: 254) (Zsolnay *et al.* 1999). Higher HIX values are indicative of increased DOM humification. The biological index (BIX) employed for the evaluation of recently produced DOM and autochthonous production, was calculated as the ratio of the at a fixed excitation of 310 nm (Ex:310 nm). High BIX values (>1) associate with a dominant autochthonous DOM source (Huguet *et al.* 2010).

Figure S1. Monthly cumulative precipitation (30 days prior to sample collection date) (blue columns) and mean monthly air temperature (red circles: maximum temperature; light blue circles: minimum temperature). Data downloaded from the meteorological station "Puesto Rincón" (AIC: <u>http://www.aic.gov.ar/</u>) adjacent to the branch Brazo Rincón (BR) of Lake Nahuel Huapi. Summer_E: December, Summer_L: March, Winter: July, Spring: November.

Figure S2. Spearman's correlation analysis of physicochemical parameters including DOM concentration and quality variables and THg concentration in the Brazo Rincón branch (BR, Lake Nahuel Huapi) and Lake Pire.

Table S1. Hydrogeomorphic features of Brazo Rincón branch (BR, Lake Nahuel Huapi) and Lake Pire (Nahuel Huapi National Park, Patagonia, Argentina)

	Brazo Rincón branch (BR)	L. Pire
	L. Nahuel Huapi)	
Perimeter (km)	19.27	2.44
Area (ha)	1095	19.9
P:A (m ⁻¹)	0.0017	0.012
$Z_{max}(m)$	100	20^{a}
DR	14.39	23.34
Catchment area (ha)	15758	464.47 ^A

A (lake area); P:A (lake perimeter to lake area ratio); Z_{max} (maximum depth); DR (drainage ratio (catchment: lake area)) and catchment area.

^AMansilla Ferro *et al.* 2024.

Variable		Two-way ANOVA				
	Factor	F	<i>P</i> -value			
pН	Site	76.692	< 0.001			
•	Season	6.810	< 0.001			
	Site*Season	5.766	0.002			
Chl-a	Lake	4.220	0.044			
	Season	0.528	0.665			
	Lake*Season	1.712	0.174			
DOC	Lake	147.587	< 0.001			
	Season	6.265	< 0.001			
	Lake*Season	3.548	0.020			
DIC	Lake	21.909	< 0.001			
	Season	2.416	0.075			
	Lake*Season	0.791	0.504			
TSS	Lake	132.566	< 0.001			
	Season	0.830	0.483			
	Lake*Season	0.597	0.619			
Chl-a:TSS	Lake	87.991	< 0.001			
	Season	0.524	0.668			
	Lake*Season	0.583	0.628			
S275 295	Lake	147.456	< 0.001			
~ 275-295	Season	2.256	0.091			
	Lake*Season	0.242	0.867			
SUVA	Lake	29.778	< 0.001			
50 11	Season	15.223	< 0.001			
	Lake*Season	3.401	0.023			
<i>a</i> ₂₅₀ ·DOC	Lake	3 050	0.086			
u350.200	Season	9.171	< 0.001			
	Lake*Season	1.146	0.338			
<i>d</i> ₄₄₀	Lake	96 229	<0.001			
<i>u</i> 440	Season	6 544	<0.001			
	Lake*Season	1 1 38	0 341			
HIX	Lake	70 494	<0.001			
11171	Season	12 709	<0.001			
	Lake*Season	2.222	0.095			
RIX	Lake	22.633	<0.001			
D 111	Season	41 490	<0.001			
	Lake*Season	1 844	0 149			
THσ	Lake	10 205	0.002			
1116	Season	2 982	0.038			
	Lake*Season	13 093	<0.001			
THODOC	Lake	61 007	<0.001			
IIIg.DOC	Season	2 771	0.001			
	Lake*Season	2.//I Q 170	<pre>0.049</pre>			
	Lake Season	7.1/7	<0.001			

Table S2. Two-way ANOVA on ranks and *post hoc* comparisons (Holm–Sidak) performed to evaluate spatial and seasonal differences in physicochemical and DOM quality variables of the lakes Pire and BR.

Chl-*a*, chlorophyll-*a*; DOC, dissolved organic carbon; DIC, dissolved inorganic carbon; TSS, total suspended solids; Chl-*a*:TSS ratio, proportion of Chl-*a* in the total suspended solids; S_{275–295}, spectral slope between 275 and 295 nm; SUVA, specific UV absorbance at 254 nm a 254 (*a*₂₅₄),DOC); specific UV absorbance at 350 nm (*a*₃₅₀,DOC); *a*₄₄₀, absorption coefficient at 440 nm, color; HIX, humification index; BIX, biological index; THg, total mercury; THg:DOC, ratio of total mercury concentration to dissolved organic carbon concentration.

Variables	PC1	PC2	PC3
Precipitation (30 days)	n.s.	0.69***	-0.25**
Temp.	n.s.	-0.72***	0.08***
DOC	0.63***	-0.61***	0.3**
TSS	0.52***	-0.28**	n.s.
DIC	n.s.	-0.16***	0.62***
Chl-a	0.27**	n.s.	n.s.
<i>a</i> ₄₄₀	0.84***	0.24***	0.33***
S ₂₇₅₋₂₉₅	-0.9***	n.s.	-n.s.
<i>a</i> ₃₅₀ :DOC	0.55***	0.67***	n.s.
THg	n.s.	0.27**	0.83***
BIX	-0.55***	-0.34***	0.08**
HIX	0.75***	0.27**	-0.3**
pH	-0.7***	n.s.	n.s.
THg:DOC	n.s.	0.53***	0.72***
SUVA	n.s.	0.87***	n.s.
Eigenvalue	4.15	3.3	2.02
Variance explained	27.66	21.98	13.49
Accumulated variance explaine	u(70) 27.00	47.0	05.1

Table S3. Results of the Principal Component Analysis (PCA). Correlation coefficients of the different variables and the principal components 1, 2 and 3 (PC1, PC2 and PC3).

Probabilities are significant at: **, P < 0.001; ***, P < 0.0001.

Table S4. Results of the nonparametric PERMANOVA on Euclidean distances performed to PCA variables.

Parameter	d.f.	SS	<i>R</i> ²	F	<i>P</i> -value
Lake	1	203.77	0.26	22.59	0.001
Residual	65	586.35	0.74		
Total	66	790.12	1		

Pairwise comparisons were conducted using adonis2 in the vegan package.

Table S5. Nonparametric PERMANOVA on Euclidean distances performed to variables included in the PCA from Seasons.

Parameter	d.f.	SS	R^2	F	<i>P</i> -value
Season	3	214.33	0.27	7.82	0.001
Residual	63	575.79	0.73		
Total	66	790.12	1		
Comparison	<i>P</i> -value				
Early summer v. winter	0.001				
Early summer v. spring	0.001				
Early summer v. late summer	0.001				
Spring v. winter	0.001				
Spring v. late summer	0.001				
Winter v. late summer	0.001				

Pairwise comparisons were conducted using adonis2 in the *vegan* package. Only significant *a posteriori* pairwise comparisons are included.

References

Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. *Limnology and Oceanography* **57**, 1453–1466.

Hansen AM, Kraus TE, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA (2016) Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. *Limnology and Oceanography* **61**, 1015–1032.

Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. *Limnology and Oceanography* **53**, 955–969.

Helms JR, Stubbins A, Perdue EM, Green NW, Chen H, Mopper K (2013) Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. *Marine Chemistry* **155**, 81-91.

Huguet A, Vacher L, Saubusse S, Etcheber H, Abril G, Relexans S, Ibalot F, Parlanti E (2010) New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. *Organic Geochemistry* **41**, 595–610.

Mansilla Ferro C, Garcia PE, Reissig M, Diéguez MC (2024) Bioclimatic influence on water chemistry and dissolved organic matter in shallow temperate lakes of Andean Patagonia: A gradient approach. *Freshwater Biology* **69**, 724-738.

Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS (2011) Using fluorescence to characterize dissolved organic matter in Antarctic Sea ice brines. *Journal of Geophysical Research: Biogeosciences* **116**, G03027.

Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. *Environmental Science and Technology* **37**, 4702-4708.

Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. *Chemosphere* **38**, 45-50.