Supplementary Material

Photolysis characteristics and influencing factors of the pesticide pyrimethanil in natural waters

Jiayun Zhao^A, Hui Liu^{A,*}, Zhiwen Li^A, Xiaomei Zhu^A and Bing Sun^A

^ACollege of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, PR China

*Correspondence to: Email: <u>liuhui@dlmu.edu.cn</u>

Analysis of PYR products

A sample solution (20 mL) after irradiation was spiked with 1 μ L of 2-hydroxy-5-chlorobiphenyl (100 μ g L⁻¹) as the internal standard, and then was acidified to pH ~2 using 2.5 M H₂SO₄, followed by extraction with dichloromethane (10 mL, 2×). After dehydration using an anhydrous sodium sulfate column, the extract was concentrated to 1 mL for direct analysis by GC–MS. Analysis was performed using an Agilent 7890 GC and 5975C MSD with an EI source operating in SCAN mode. The GC was operated with helium as the carrier gas in the splitless mode with a DB-17ms capillary column (30 m × 0.25 mm × 0.25 μ m). The following conditions were used for the analysis: a 1- μ L injection, a source temperature of 230°C and an inlet temperature of 270°C. The column temperature ramp was as follows: 60°C for 2.0 min, 60–280°C at 20°C min⁻¹ and 280°C hold 5 min.

Fluorescence spectra

Fluorescence spectra of the HA and SRNOM were obtained with an excitation at 350 nm and emission spectra between 360 and 600 nm. Excitation–emission matrix (EEM) spectrum of HA was obtained by continuous scanning of the emission wavelength from 250 to 650 nm by increasing the excitation wavelength from 200 to 550 nm. The EEM spectrum of SRNOM was obtained from IHSS.

Fig. S1. Schematic diagram of the photochemical reactors for natural solar light irradiation (a) and enhanced artificial light irradiation (b).

Table S1.	The photodegradation ra	te constants, R ² and t	1/2 of PYR in pure water and	d natural waters under so	lar light irradiation
-----------	-------------------------	------------------------------------	------------------------------	---------------------------	-----------------------

1 0	, 12 1		
PYR ($C_0 = 5 \text{ mg } L^{-1}$)	$k (\times 10^3 \text{ h}^{-1})$	R^2	$t_{1/2}(h)$
pure water	4.10±0.19	0.988	169±8.1
fresh water	14.4±2.5	0.868	49.6±8.6
after 12 h	8.37±0.51	0.985	83.1±5.2
seawater	12.0±0.86	0.975	57.8±4.1

Table S2. Element composition (%) of HA and SRNOM

	С	Н	0	Ν	
HA	42.92	3.01	51.83	0.90	
SRNOM	50.70	3.97	41.48	1.27	

350

400

500 550

600 650

200 -

250 300

Fig S2. EEM spectra of SRNOM and HA.

PYR ($C_0 = 5 \text{ mg } L^{-1}$)	$k ({\rm h}^{-1})$
In pure water	0.024 ± 0.0028
In the presence of:	
0.43 mg of C per 1 L of HA	0.084 ± 0.0015
0.86 mg of C per 1 L of HA	0.114 ± 0.0030
2.15 mg of C per 1 L of HA	0.136 ± 0.0055
4.29 mg of C per 1 L of HA	0.204 ± 0.085
2.15 mg of C per 1 L of HA and 0.5 M NaCl	0.146 ± 0.0078
0.51 mg of C per 1 L of SRNOM	0.066 ± 0.0094
1.01 mg of C per 1 L of SRNOM	0.084 ± 0.0083
2.53 mg of C per 1 L of SRNOM	0.138 ± 0.011
5.07 mg of C per 1 L of SRNOM	0.150 ± 0.0074
2.53 mg of C per 1 L of SRNOM and 0.5 M NaCl	0.079 ± 0.0067

Table S3. The photodegradation rates of PYR in the present of HA and SRNOM with or without Cl⁻ under the enhanced artificial light irradiation

0.000

Fig S3. UV-Vis absorbance and fluorescence spectra of HA and SRNOM with excitation at 350 nm.

MS spectrum at 5.752min corresponding to P2

0.

Fig. S4. Chromatograph and mass spectra of PYR and its photodegradation products

230 . 质荷比

MS spectrum at 14.675min corresponding to PYR

MS spectrum at 17.398min corresponding to P3

MS spectrum at 21.001min and 21.327min corresponding to P4 and P5

Fig. S4. (Cont.)

	Structure of product	MM	Retention time	Characteristic
	Surdenate of product	101 00	(min)	fragment ion (m/z)
Pyrime thanil	H ₃ C N H	199	14.675	77, 82, 198
P1	NH ₂	93	5.012	77, 93
P2	H ₃ C N OH	124	5.752	78,109,124
Р3	CI N H ₃ C N H	233	17.398	77,198,232
P4	HO H ₃ C N H ₃ C N H	215	21.001	78,198,214
Р5	H ₃ C N H	215	21.327	78, 198, 214

Table S4. Molecular structure information of PYR and its photodegradation products determined by GC-MS