Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Articles citing this paper

Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica

Marco Grotti A C , Francesco Soggia A , Cristina Lagomarsino A , Walter Goessler B and Kevin A. Francesconi B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genova, Italy.

B Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz, Austria.

C Corresponding author. Email: grotti@chimica.unige.it

Environmental Chemistry 5(3) 171-175 https://doi.org/10.1071/EN08025
Submitted: 14 April 2008  Accepted: 19 May 2008   Published: 19 June 2008



33 articles found in Crossref database.

Contribution of Arsenic Species in Unicellular Algae to the Cycling of Arsenic in Marine Ecosystems
Duncan Elliott G., Maher William A., Foster Simon D.
Environmental Science & Technology. 2015 49(1). p.33
Occurrence of methylated arsenic species in parts of plants growing in polluted soils
Ruiz-Chancho Maria Jose, López-Sánchez Jose Fermín, Rubio Roser
International Journal of Environmental Analytical Chemistry. 2011 91(9). p.844
The formation and fate of organoarsenic species in marine ecosystems: do existing experimental approaches appropriately simulate ecosystem complexity?
Duncan Elliott G., Maher William A., Foster Simon D.
Environmental Chemistry. 2015 12(2). p.149
Arsenic species in Australian temperate marine food chains
Maher W., Foster S., Krikowa F.
Marine and Freshwater Research. 2009 60(9). p.885
Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef
Khokiattiwong Somkiat, Kornkanitnan Narumol, Goessler Walter, Kokarnig Sabine, Francesconi Kevin A.
Environmental Chemistry. 2009 6(3). p.226
Arsenic Speciation in Algae (2019)
Dìaz Oscar, Pastene Ruben, Encina-Montoya Francisco, Vega Rolando, Oberti-Grassau Carlos
Arsenic Speciation in Algae (2019)
Hu Bin, Chen Beibei, He Man, Nan Kai, Xu Yan, Xu Chi
Speciation analysis of arsenic in seafood and seaweed: Part I—evaluation and optimization of methods
Wolle Mesay Mulugeta, Conklin Sean D.
Analytical and Bioanalytical Chemistry. 2018 410(22). p.5675
Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta
Duncan Elliott, Foster Simon, Maher William
botm. 2010 53(4). p.377
An EXAFS study on the adsorption structure of phenyl-substituted organoarsenic compounds on ferrihydrite
Tanaka Masato, Togo Yoko S., Yamaguchi Noriko, Takahashi Yoshio
Journal of Colloid and Interface Science. 2014 415 p.13
Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain
Caumette G., Koch I., Reimer K. J.
Journal of Environmental Monitoring. 2012 14(11). p.2841
Contamination status of arsenic in fish and shellfish from three river basins in Ghana
Gbogbo Francis, Otoo Samuel Darlynton, Asomaning Obed, Huago Robert Quaye
Environmental Monitoring and Assessment. 2017 189(8).
Mechanisms of Arsenic Toxicity and Tolerance in Plants (2018)
Arora Neha, Gulati Khushboo, Tripathi Shweta, Pruthi Vikas, Poluri Krishna Mohan
Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes
Moreira V.R., Lebron Y.A.R., Santos L.V.S., Coutinho de Paula E., Amaral M.C.S.
Process Safety and Environmental Protection. 2021 148 p.604
Measurement of arsenic compounds in littoral zone algae from the Western Mediterranean Sea. Occurrence of arsenobetaine
Llorente-Mirandes Toni, Ruiz-Chancho Maria José, Barbero Mercedes, Rubio Roser, López-Sánchez José Fermín
Chemosphere. 2010 81(7). p.867
Analytical methods for the determination of arsenosugars—A review of recent trends and developments
Niegel Claudia, Matysik Frank-Michael
Analytica Chimica Acta. 2010 657(2). p.83
Possible key intermediates in arsenic biochemistry: Synthesis and identification by liquid chromatography electrospray ionization mass spectrometry and high resolution mass spectrometry
de Bettencourt Alexandre M., Duarte Maria Filomena, Florêncio Maria Helena, Henriques Fernando F., Madeira Paulo A., Portela Maria Inês, Vilas-Boas Luis Filipe
Microchemical Journal. 2011 99(2). p.218
Determination of Water-Soluble Arsenic Compounds in Commercial Edible Seaweed by LC-ICPMS
Llorente-Mirandes Toni, Ruiz-Chancho Maria José, Barbero Mercedes, Rubio Roser, López-Sánchez José Fermín
Journal of Agricultural and Food Chemistry. 2011 59(24). p.12963
Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches
Hajeb P., Sloth J. J., Shakibazadeh Sh., Mahyudin N. A., Afsah‐Hejri L.
Comprehensive Reviews in Food Science and Food Safety. 2014 13(4). p.457
Arsenic speciation analysis of environmental samples
Ardini Francisco, Dan Greta, Grotti Marco
Journal of Analytical Atomic Spectrometry. 2020 35(2). p.215
Occurrence of arsenic species in the seagrass Posidonia oceanica and in the marine algae Lessonia nigrescens and Durvillaea antarctica
Ruiz Chancho Maria José, López Sánchez José Fermín, Rubio Roser
Journal of Applied Phycology. 2010 22(4). p.465
Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants
Rubio R., Ruiz-Chancho M.J., López-Sánchez J.F., Rubio R., López-Sánchez J.F.
TrAC Trends in Analytical Chemistry. 2010 29(1). p.53
Arsenic speciation in marine organisms from Antarctic coastal environments
Grotti Marco, Lagomarsino Cristina, Goessler Walter, Francesconi Kevin A.
Environmental Chemistry. 2010 7(2). p.207
Arsenic bioaccumulation and biotransformation in aquatic organisms
Zhang Wei, Miao Ai-Jun, Wang Ning-Xin, Li Chengjun, Sha Jun, Jia Jianbo, Alessi Daniel S., Yan Bing, Ok Yong Sik
Environment International. 2022 163 p.107221
High temperature liquid chromatography–inductively coupled plasma mass spectrometry for the determination of arsenosugars in biological samples
Terol Amanda, Ardini Francisco, Grotti Marco, Todolí José Luis
Journal of Chromatography A. 2012 1262 p.70
Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review
Ghosh Devanita, Ghosh Anwesha, Bhadury Punyasloke
Geoscience Letters. 2022 9(1).
Closed Anaerobic Biotransformation Products of Organoarsenic Compounds inFucus distichus
Ojo Abiodun A., Onasanya Amos
ISRN Environmental Chemistry. 2013 2013 p.1
Arsenobetaine in Seawater: Depth Profiles from Selected Sites in the North Atlantic
Glabonjat Ronald A., Raber Georg, Van Mooy Benjamin A. S., Francesconi Kevin A.
Environmental Science & Technology. 2018 52(2). p.522
Organometallics in Environment and Toxicology (2010)
Reimer Kenneth J., Koch Iris, Cullen William R.
Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG
Price Roy E., Breuer Christian, Reeves Eoghan, Bach Wolfgang, Pichler Thomas
Deep Sea Research Part I: Oceanographic Research Papers. 2016 117 p.95
First Report on the Elemental Composition of the Bigeye Thresher Shark Alopias superciliosus Lowe, 1841 from the Mediterranean Sea
ÇİFTÇİ Nuray, CİCİK Bedii, AYAS Deniz
Natural and Engineering Sciences. 2023 8(2). p.106
Arsenic speciation in food chains from mid-Atlantic hydrothermal vents
Taylor Vivien F., Jackson Brian P., Siegfried Matthew R., Navratilova Jana, Francesconi Kevin A., Kirshtein Julie, Voytek Mary
Environmental Chemistry. 2012 9(2). p.130
The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations
Tanaka Masato, Takahashi Yoshio, Yamaguchi Noriko, Kim Kyoung-Woong, Zheng Guodong, Sakamitsu Mika
Geochimica et Cosmochimica Acta. 2013 105 p.360

Committee on Publication Ethics


Abstract Export Citation Get Permission