Register      Login
Exploration Geophysics Exploration Geophysics Society
Journal of the Australian Society of Exploration Geophysicists
RESEARCH ARTICLE

Relationship between bulk mineralogy and induced polarisation responses in iron oxide-copper-gold and porphyry copper mineralisation, northern Chile

Sebastián Aguilef 1 6 Jaime Araya Vargas 2 Gonzalo Yáñez 3 4 5
+ Author Affiliations
- Author Affiliations

1 Servicio Nacional de Geología y Minería (SERNAGEOMIN), Santa María 0104, Santiago 7520405, Chile.

2 GFZ German Research Centre for Geosciences, Telegrafenberg 14473, Potsdam, Germany.

3 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago 7820436, Chile.

4 Millennium Nucleus for Metals Tracing along Subduction (NMTM, 130065), Plaza Ercilla 803, Santiago 8370450, Chile.

5 GEGA, Andean Geothermal Center of Excellence (15090013), Plaza Ercilla 803, Santiago 8370450, Chile.

6 Corresponding author. Email: sebastian.aguilef@sernageomin.cl

Exploration Geophysics 48(4) 353-362 https://doi.org/10.1071/EG15077
Submitted: 11 August 2015  Accepted: 13 June 2016   Published: 25 July 2016

Abstract

We have studied the correlation between bulk mineralogy and induced polarisation (IP) responses in iron oxide-copper-gold (IOCG) and porphyry copper mineralised systems in northern Chile. Twelve drillholes (> 5000 m) that intersect IP sections were mapped and sampled to obtain geological characteristics and to quantify metallic minerals concentration in ore bodies. Geological parameters and modelled geophysical responses (electrical chargeability and resistivity) were compared using qualitative and quantitative criteria.

Data analyses show that bulk sulphide concentration is the major factor that explains variations in the IP effect, even for IOCG ore bodies associated with magnetite mineralisation (up to 5 vol. %). Electrical chargeability exhibits a direct, but non-linear proportionality with sulphides content, while no clear trend is observed when chargeability is compared to magnetite concentration. In drillhole segments where macroscopic sulphides were not mapped, but IP results suggested high chargeabilities, petrographic studies revealed at least 1 vol. % of pyrite occurring as micro crystals (< 0.125 mm). The apparent resistivity data do not show any direct relationship with chargeability or sulphide contents.

Key words: copper-porphyry, IOCG, IP, magnetite, resistivity.


References

Aguilef, S., 2012, Análisis Geológico de estudios Geofísicos de Polarización Inducida (IP) en sistemas IOCG y Pórfido Cuprífero del Norte de Chile: B.Sc. thesis, Universidad de Chile.

Arévalo, C., Grocott, J., and Welkner, D., 2003, The Atacama Fault System in the Huasco province, southern Atacama Desert, Chile: Proceedings of 10th Congreso Geológico Chileno, 1–5.

Baldwin, R. W., 1959, A decade of development on overvoltage surveying: Mining Engineering, 214, 307–314

Charrier, R., Pinto, L., and Rodriguez, M., 2007, Tectonostratigraphic evolution of the Andean Orogen in Chile, in T. Moreno, and W. Gibbons, eds., The geology of Chile: The Geological Society, Special Publication, 21–116.

Grocott, J., and Taylor, G. K., 2002, Magmatic arc fault system, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30ʹS to 27°00ʹS): Journal of the Geological Society, 159, 425–443
Magmatic arc fault system, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30ʹS to 27°00ʹS):Crossref | GoogleScholarGoogle Scholar |

Hart, J., and Freeman, H., 2003, Geophysics of the Prominent Hill prospect, South Australia, in M. C. Dentith, ed., Geophysical signatures of South Australian mineral deposits: ASEG Special Publications 22, 93–100.

Kovacic, P., Barra, F., Tornos, F., Morata, D., and Cerda, A., 2012, Nuevos antecedentes geológicos y geoquímicos del yacimiento tipo IOCG Casualidad, Distrito Sierra Overa, II Región de Antofagasta, Chile: Proceedings of 13th Congreso Geológico Chileno, 43–45.

López, L., Echeveste, H., Tessone, M., Alperín, M., and Etcheverry, R., 2012, Geoelectric exploration of the Purísima-Rumicruz district, Jujuy province, Argentina: International Journal of Geophysics, 2012, 371059

Matthews, S. J., Cornejo, P., and Riquelme, R., 2006, Carta Inca de Oro. Región de Atacama: Servicio Nacional de Geología y Minería, Santiago, Chile, scale 1 : 100000, 1 map.

Mooney, H. M., and Bleifuss, R., 1953, Magnetic susceptibility in Minnesota: II, Analysis of field results: Geophysics, 18, 383–393
Magnetic susceptibility in Minnesota: II, Analysis of field results:Crossref | GoogleScholarGoogle Scholar |

Münchmeyer, C., Venegas, R., Cerda, A., and Garay, B., 2006, Ocurrencias de mineralización tipo IOCG en el sector Casualidad, III Región de Atacama, Chile: Proceedings of 11th Congreso Geológico Chileno, 315–318.

Mwakanyamale, K., Slater, L., Binley, A., and Ntarlagiannis, D., 2012, Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area: Geophysics, 77, E397–E409
Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area:Crossref | GoogleScholarGoogle Scholar |

Nelson, P., and Van Voorhis, G., 1983, Estimation of sulfide content from induced polarization data: Geophysics, 48, 62–75
Estimation of sulfide content from induced polarization data:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsleltQ%3D%3D&md5=9128135d586e715caa753ea2f719bf2aCAS |

Pelton, W., Ward, S., Hallof, P., Sill, W., and Nelson, P., 1978, Mineral discrimination and removal of inductive coupling with multi-frequency IP: Geophysics, 43, 588–609
Mineral discrimination and removal of inductive coupling with multi-frequency IP:Crossref | GoogleScholarGoogle Scholar |

Pérez, D., Baeza, L., and Chiang, O., 2009, Caracterización geoquímica y petrológica de los pórfidos del depósito Cu-Au- (Mo) de Inca de Oro, tercera Región de Atacama, Chile: Proceedings of 12th Congreso Geológico Chileno, S11–032.

Pittard, K., and Bourne, B., 2007, The contribution of magnetite to the induced polarization response of the Centenary orebody: Exploration Geophysics, 38, 200–207
The contribution of magnetite to the induced polarization response of the Centenary orebody:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFSnsLg%3D&md5=7ffc275faac5518a01e60a13088932c0CAS |

Rivera, S., Baeza, L., Kovacic P., and y Martínez, A., 2006, Primeros antecedentes de la geología del pórfido Cu-Mo-Au Inca de Oro, Tercera Región de Atacama, Chile: Proceedings of 11th Congreso Geológico Chileno, 339–342.

Rivera, S., Cerda, A., Garay, B., Kovacic, P. V., and Villegas, P., 2009, Descubrimiento y Geología del Yacimiento tipo IOCG Casualidad. Distrito Sierra Overa, II Región de Antofagasta, Chile: Proceedings of 12th Congreso Geológico Chileno, S11–039.

Seigel, H. O., Vanhala, H., and Sheard, N., 1997, Some case histories of source discrimination using time-domain spectral IP: Geophysics, 62, 1394–1408
Some case histories of source discrimination using time-domain spectral IP:Crossref | GoogleScholarGoogle Scholar |

SERNAGEOMIN, 2003, Mapa Geológico de Chile, Publicación Geológica Digital, No. 4 (CD-ROM, version 1.0, 2003): Servicio Nacional de Geología y Minería. [Web document]. Available at http://www.ipgp.fr/~dechabal/Geol-millon.pdf (accessed 4 August 2015).

Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990, Applied geophysics (2nd edition): Cambridge University Press.

Van Voorhis, G. D., Nelson, P. H., and Drake, T. L., 1973, Complex resistivity spectra of porphyry copper mineralization: Geophysics, 38, 49–60

Vanhala, H., and Peltoniemi, M., 1992, Spectral IP studies of Finnish ore prospects: Geophysics, 57, 1545–1555
Spectral IP studies of Finnish ore prospects:Crossref | GoogleScholarGoogle Scholar |

Vella, L., and Emerson, D., 2009, Carrapateena: physical properties of a new iron-oxide copper-gold deposit: Adelaide, Australia: 20th ASEG International Geophysical Conference and Exhibition, Extended Abstracts, 1–13.

Watts, A., 2002, Discovery of the Ujina Cu deposit, Collahuasi District, Chile: 72nd Exposition and Annual International Meeting, SEG, Expanded Abstracts, 412–415.