Register      Login
Exploration Geophysics Exploration Geophysics Society
Journal of the Australian Society of Exploration Geophysicists
RESEARCH ARTICLE

Seismic data decomposition and reconstruction with sparse Gaussian beams and sparse optimisation method

Peng Liu 1 Yanfei Wang 1 2
+ Author Affiliations
- Author Affiliations

1 Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

2 Corresponding author. Email: yfwang@mail.iggcas.ac.cn

Exploration Geophysics 49(1) 50-57 https://doi.org/10.1071/EG15114
Submitted: 8 April 2015  Accepted: 26 August 2016   Published: 25 October 2016

Abstract

We study seismic data decomposition and reconstruction problems in this paper. Seismic data representation using sparse Gaussian beams is proposed. We formulate this problem as an l0-norm constrained minimisation problem. In solving the l0-norm minimisation, dip-angle scanning is performed and a quasi-Newton method is utilised to calculate the waveform function. Numerical experiments on synthetic data and real data indicate that the seismic data can be properly represented using sparse Gaussian beams with the sparse optimisation method. Moreover, the method has the ability to remove random noise and recover missing data. Finally, the waveform function obtained by sparse decomposition can be used for Gaussian beam migration. The approach described here can obtain a higher signal-to-noise ratio image than the traditional poststack Gaussian beam migration, and the overall runtime is comparable.

Key words: Gaussian beams, optimisation, sparse decomposition.


References

Alkhalifah, T., 1995, Gaussian beam depth migration for anisotropic media: Geophysics, 60, 1474–1484
Gaussian beam depth migration for anisotropic media:Crossref | GoogleScholarGoogle Scholar |

Babich, V. M., and Popov, M. M., 1989, Gaussian summation method: Radiophysics and Quantum Electronics, 32, 1063–1081
Gaussian summation method:Crossref | GoogleScholarGoogle Scholar |

Cao, J. J., Wang, Y. F., Zhao, J. T., and Yang, C. C., 2011, A review on restoration of seismic wavefields based on regularization and compressive sensing: Inverse Problems in Science and Engineering, 19, 679–704
A review on restoration of seismic wavefields based on regularization and compressive sensing:Crossref | GoogleScholarGoogle Scholar |

Cao, J. J., Wang, Y. F., and Yang, C. C., 2012, Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization: Chinese Journal of Geophysics, 55, 239–251
Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization:Crossref | GoogleScholarGoogle Scholar |

Červený, V., and Pšenčík, I., 1983, Gaussian beams in two-dimensional elastic inhomogeneous media: Geophysical Journal of the Royal Astronomical Society, 72, 417–433
Gaussian beams in two-dimensional elastic inhomogeneous media:Crossref | GoogleScholarGoogle Scholar |

Chartrand, R., and Staneva, V., 2008, Restricted isometry properties and nonconvex compressive sensing: Inverse Problems, 24, 035020
Restricted isometry properties and nonconvex compressive sensing:Crossref | GoogleScholarGoogle Scholar |

Costa, C. A., Raz, S., and Kosloff, D., 1989, Gaussian beam migration: 59th Annual International Meeting, SEG, Expanded Abstracts, 1169–1171.

Geng, Y., Wu, R. S., and Gao, J. H., 2014, Gabor-frame-based Gaussian packet migration: Geophysical Prospecting, 62, 1432–1452
Gabor-frame-based Gaussian packet migration:Crossref | GoogleScholarGoogle Scholar |

Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70, S71–S77
Gaussian beam migration of common-shot records:Crossref | GoogleScholarGoogle Scholar |

Gray, S. H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74, S11–S23
True-amplitude Gaussian-beam migration:Crossref | GoogleScholarGoogle Scholar |

Herrmann, F. J., and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173, 233–248
Non-parametric seismic data recovery with curvelet frames:Crossref | GoogleScholarGoogle Scholar |

Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416–1428
Gaussian beam migration:Crossref | GoogleScholarGoogle Scholar |

Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240–1250
Prestack Gaussian-beam depth migration:Crossref | GoogleScholarGoogle Scholar |

Klimeš, L., 1989, Optimization of the shape of Gaussian beams of a fixed length: Studia Geophysica et Geodaetica, 33, 146–163
Optimization of the shape of Gaussian beams of a fixed length:Crossref | GoogleScholarGoogle Scholar |

Li, H., Wang, H. Z., Feng, B., Hu, Y., and Zhang, C., 2014, Efficient pre-stack depth migration method using characteristic Gaussian packets: Chinese Journal of Geophysics, 57, 2258–2268

Ma, J., Plonka, G., and Chauris, H., 2010, A new sparse representation of seismic data using adaptive easy-path wavelet transform: IEEE Geoscience and Remote Sensing Letters, 7, 540–544
A new sparse representation of seismic data using adaptive easy-path wavelet transform:Crossref | GoogleScholarGoogle Scholar |

Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, 63, 1150–1165
3-D seismic attributes using a semblance-based coherency algorithm:Crossref | GoogleScholarGoogle Scholar |

Meinshausen, N., and Yu, B., 2009, Lasso-type recovery of sparse representations for high-dimensional data: Annals of Statistics, 37, 246–270
Lasso-type recovery of sparse representations for high-dimensional data:Crossref | GoogleScholarGoogle Scholar |

Nowack, R., and Aki, K., 1984, The two-dimensional Gaussian beam synthetic method: testing and application: Journal of Geophysical Research, 89, 7797–7819
The two-dimensional Gaussian beam synthetic method: testing and application:Crossref | GoogleScholarGoogle Scholar |

Popov, M. M., 1982, A new method of computation of wave fields using Gaussian beams: Wave Motion, 4, 85–97
A new method of computation of wave fields using Gaussian beams:Crossref | GoogleScholarGoogle Scholar |

Raz, S., 1987, Beam stacking: a generalized preprocessing technique: Geophysics, 52, 1199–1210
Beam stacking: a generalized preprocessing technique:Crossref | GoogleScholarGoogle Scholar |

Sacchi, M. D., Ulrych, T. J., and Walker, C. J., 1998, Interpolation and extrapolation using a high-resolution discrete Fourier transform: IEEE Transactions on Signal Processing, 46, 31–38
Interpolation and extrapolation using a high-resolution discrete Fourier transform:Crossref | GoogleScholarGoogle Scholar |

Tanushev, N. M., Tsai, R., Fomel, S., and Engquist, B., 2011, Gaussian beam decomposition for seismic migration: SEG Technical Program, Expanded Abstracts, 30, 3356–3361.

Wang, Y. F., 2007, Computational methods for inverse problems and their applications: Higher Education Press (Beijing).

Wang, W. H., Pei, J. Y., and Zhang, J. F., 2007, Prestack seismic data reconstruction using weighted parabolic Radon transform: Chinese Journal of Geophysics, 50, 737–746
Prestack seismic data reconstruction using weighted parabolic Radon transform:Crossref | GoogleScholarGoogle Scholar |

Wang, Y. F., Cao, J. J., and Yang, C. C., 2011a, Recovery of seismic wavefields based on compressive sensing by an l 1-norm constrained trust region method and the piecewise random sub-sampling: Geophysical Journal International, 187, 199–213
Recovery of seismic wavefields based on compressive sensing by an l 1-norm constrained trust region method and the piecewise random sub-sampling:Crossref | GoogleScholarGoogle Scholar |

Wang, Y. F., Stepanova, I. E., Strakhov, V. N., and Yagola, A. G., 2011b, Inverse problems in geophysics and solution methods: Higher Education Press (Beijing).

Wang, Y. F., Yang, C. C., and Cao, J. J., 2012, On Tikhonov regularization and compressive sensing for seismic signal processing: Mathematical Models and Methods in Applied Sciences, 22, 1150008
On Tikhonov regularization and compressive sensing for seismic signal processing:Crossref | GoogleScholarGoogle Scholar |

Wang, Y. F., Liu, P., Li, Z. H., Sun, T., Yang, C. C., and Zheng, Q. S., 2013, Data regularization using Gaussian beams decomposition and sparse norms: Journal of Inverse and Ill-posed Problems, 21, 1–23
Data regularization using Gaussian beams decomposition and sparse norms:Crossref | GoogleScholarGoogle Scholar |

Weber, M., 1988, Computation of body-wave seismograms in absorbing 2-D media using the Gaussian beam method: comparison with exact methods: Geophysical Journal International, 92, 9–24
Computation of body-wave seismograms in absorbing 2-D media using the Gaussian beam method: comparison with exact methods:Crossref | GoogleScholarGoogle Scholar |

White, B. S., Norris, A., Bayliss, A., and Burridge, R., 1987, Some remarks on the Gaussian beam summation method: Geophysical Journal International, 89, 579–636
Some remarks on the Gaussian beam summation method:Crossref | GoogleScholarGoogle Scholar |

Yuan, Y. X., 1993, Numerical methods for nonlinear programming: Shanghai Science and Technology Publication.

Žáček, K., 2006, Decomposition of the wave field into optimized Gaussian packets: Studia Geophysica et Geodaetica, 50, 367–380
Decomposition of the wave field into optimized Gaussian packets:Crossref | GoogleScholarGoogle Scholar |

Zhu, T., Gray, S. H., and Wang, D., 2007, Prestack Gaussian-beam depth migration in anisotropic media: Geophysics, 72, S133–S138
Prestack Gaussian-beam depth migration in anisotropic media:Crossref | GoogleScholarGoogle Scholar |

Zou, H., 2006, The adaptive lasso and its oracle properties: Journal of the American Statistical Association, 101, 1418–1429
The adaptive lasso and its oracle properties:Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1KqtA%3D%3D&md5=b5c2103552d3bb8d24ba9b052e44af0aCAS |