Gaussian beam prestack depth migration in heterogeneous transversely isotropic media
Jianguang Han 1 2 Yun Wang 3 41 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
2 University of Chinese Academy of Sciences, Beijing 100049, China.
3 Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
4 Corresponding author. Email: yunwang@mail.iggcas.ac.cn
Exploration Geophysics 46(2) 153-158 https://doi.org/10.1071/EG13061
Submitted: 23 June 2013 Accepted: 17 February 2014 Published: 18 March 2014
Abstract
The transversely isotropic (TI) media approximation is commonly applied to assist in the processing of seismic data acquired in sedimentary environments. Based on anisotropic kinematic and dynamic ray tracing systems, a P-wave Gaussian beam prestack depth migration (GB-PSDM) method for TI media is introduced in this paper. The imaging principle of anisotropic GB-PSDM and the corresponding migration parameters are presented on the basis of the GB-PSDM method in isotropic media. Tests of synthetic and field seismic data show that the method is an accurate and efficient anisotropic prestack depth migration method in TI media.
Key words: anisotropy, Gaussian beam prestack depth migration, ray tracing, transversely isotropy media.
References
Alkhalifah, T., 1995, Gaussian beam depth migration for anisotropic media: Geophysics, 60, 1474–1484| Gaussian beam depth migration for anisotropic media:Crossref | GoogleScholarGoogle Scholar |
Alkhalifah, T., and Larner, K., 1994, Migration errors in transversely isotropic media: Geophysics, 59, 1405–1418
| Migration errors in transversely isotropic media:Crossref | GoogleScholarGoogle Scholar |
Ball, G., 1995, Estimation of anisotropy and anisotropic 3D prestack depth migration, offshore Zaire: Geophysics, 60, 1495–1513
| Estimation of anisotropy and anisotropic 3D prestack depth migration, offshore Zaire:Crossref | GoogleScholarGoogle Scholar |
Behera, L., and Tsvankin, I., 2009, Migration velocity analysis for tilted transversely isotropic media: Geophysical Prospecting, 57, 13–26
| Migration velocity analysis for tilted transversely isotropic media:Crossref | GoogleScholarGoogle Scholar |
Červeny, V., 1972, Seismic rays and ray intensities in inhomogeneous anisotropic media: Geophysical Journal International, 29, 1–13
| Seismic rays and ray intensities in inhomogeneous anisotropic media:Crossref | GoogleScholarGoogle Scholar |
Červeny, V. 2001, Seismic ray theory: Cambridge University Press.
Du, X., Bancroft, J. C., and Lines, L. R., 2007, Anisotropic reverse-time migration for tilted TI media: Geophysical Prospecting, 55, 853–869
| Anisotropic reverse-time migration for tilted TI media:Crossref | GoogleScholarGoogle Scholar |
Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70, S71–S77
| Gaussian beam migration of common-shot records:Crossref | GoogleScholarGoogle Scholar |
Gray, S. H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74, S11–S23
| True-amplitude Gaussian-beam migration:Crossref | GoogleScholarGoogle Scholar |
Hale, D., 1992a, Migration by the Kirchhoff, slant stack and Gaussian beam methods: Colorado School of Mines Center for Wave Phenomena Report 121.
Hale, D., 1992b, Computational aspects of Gaussian beam migration: Colorado School of Mines Center for Wave Phenomena Report 139.
Hanyga, A., 1986, Gaussian beams in anisotropic elastic media: Geophysical Journal International, 85, 473–504
| Gaussian beams in anisotropic elastic media:Crossref | GoogleScholarGoogle Scholar |
Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416–1428
| Gaussian beam migration:Crossref | GoogleScholarGoogle Scholar |
Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240–1250
| Prestack Gaussian-beam depth migration:Crossref | GoogleScholarGoogle Scholar |
Pedersen, Ø., Ursin, B., and Helgesen, H. K., 2010, One-way wave-equation migration of compressional and converted waves in a VTI medium: Geophysics, 75, S237–S248
| One-way wave-equation migration of compressional and converted waves in a VTI medium:Crossref | GoogleScholarGoogle Scholar |
Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R., 2008, Reverse time migration with Gaussian beams and velocity analysis applications: 70th Annual International Meeting, EAGE, Extended Abstracts, F048.
Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R., 2010, Depth migration by the Gaussian beam summation method: Geophysics, 75, S81–S93
| Depth migration by the Gaussian beam summation method:Crossref | GoogleScholarGoogle Scholar |
Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966
| Weak elastic anisotropy:Crossref | GoogleScholarGoogle Scholar |
Tsvankin, I., 2005, Seismic signatures and analysis of reflection data in anisotropic media (2nd edition): Elsevier Science Publ. Co., Inc.
Tsvankin, I., Gaiser, J., Grechka, V., Baan, M. V. D., and Thomsen, L., 2010, Seismic anisotropy in exploration and reservoir characterization: an overview: Geophysics, 75, A15–A29
| Seismic anisotropy in exploration and reservoir characterization: an overview:Crossref | GoogleScholarGoogle Scholar |
Vestrum, R. W., Lawton, D. C., and Schmid, R., 1999, Imaging structures below dipping TI media: Geophysics, 64, 1239–1246
| Imaging structures below dipping TI media:Crossref | GoogleScholarGoogle Scholar |
Wang, Z. J., 2002, Seismic anisotropy in sedimentary rocks, part 2: laboratory data: Geophysics, 67, 1423–1440
| Seismic anisotropy in sedimentary rocks, part 2: laboratory data:Crossref | GoogleScholarGoogle Scholar |
Winterstein, D. F., 1990, Velocity anisotropy terminology for geophysicists: Geophysics, 55, 1070–1088
| Velocity anisotropy terminology for geophysicists:Crossref | GoogleScholarGoogle Scholar |
Zhang, J. F., Verschuur, D. J., and Wapenaar, C. P. A., 2001, Depth migration of shot records in heterogeneous, transversely isotropic media using optimum explicit operators: Geophysical Prospecting, 49, 287–299
| Depth migration of shot records in heterogeneous, transversely isotropic media using optimum explicit operators:Crossref | GoogleScholarGoogle Scholar |
Zhang, L. B., Rector, J. W., and Hoversten, G. M., 2004, Reverse time migration in tilted transversely isotropic media: Journal of Seismic Exploration, 13, 173–188
Zhu, T. F., Gray, S. H., and Wang, D. L., 2007, Prestack Gaussian-beam depth migration in anisotropic media: Geophysics, 72, S133–S138
| Prestack Gaussian-beam depth migration in anisotropic media:Crossref | GoogleScholarGoogle Scholar |