Register      Login
Exploration Geophysics Exploration Geophysics Society
Journal of the Australian Society of Exploration Geophysicists
RESEARCH ARTICLE

Amplitude-preserved pre-stack time migration in 3D VTI media

Jiangjie Zhang 1 2 Jianfeng Zhang 1
+ Author Affiliations
- Author Affiliations

1 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

2 Corresponding author. Email: zhangjj@mail.iggcas.ac.cn

Exploration Geophysics 43(3) 171-177 https://doi.org/10.1071/EG11037
Submitted: 12 July 2011  Accepted: 24 April 2012   Published: 7 June 2012

Abstract

We present a new method of amplitude-preserved pre-stack time migration in 3D vertical transversely isotropic (VTI) media. The travel time and amplitude of a wave propagating in VTI media are calculated by using one-way wave operators and the stationary-phase theory. An imaging weight from the deconvolution imaging condition is introduced to produce amplitude-preserved image gathers for hydrocarbon and fluid detection. Velocities and stacking anisotropic parameters are estimated by a semblance scanning method. A time-dependent migration aperture corresponding to the dip of subsurface structure is then obtained to balance imaging quality and imaging noises. Numerical examples demonstrate that our method is accurate, robust and easy to implement.

Key words: amplitude-preserved, pre-stack time migration, time-dependent migration aperture, VTI media.


References

Alkhalifah, T., 2006, Kirchhoff time migration for transversely isotropic media: an application to Trinidad data: Geophysics, 71, 29–35
Kirchhoff time migration for transversely isotropic media: an application to Trinidad data:Crossref | GoogleScholarGoogle Scholar |

Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550–1566
Velocity analysis for transversely isotropic media:Crossref | GoogleScholarGoogle Scholar |

Anderson, J., Alkhalifah, T., and Tsvankin, I., 1996, Fowler DMO and time migration for transversely isotropic media: Geophysics, 61, 835–845
Fowler DMO and time migration for transversely isotropic media:Crossref | GoogleScholarGoogle Scholar |

Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic.

Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications.

Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467–481

Docherty, P., 1991, A brief comparison of some Kirchhoff integral formulas for migration and inversion: Geophysics, 56, 1164–1169
A brief comparison of some Kirchhoff integral formulas for migration and inversion:Crossref | GoogleScholarGoogle Scholar |

Fomel, S., 2004, On anelliptic approximation for qP velocities in VTI media: Geophysical Prospecting, 52, 247–259
On anelliptic approximation for qP velocities in VTI media:Crossref | GoogleScholarGoogle Scholar |

Gazdag, J., 1978, Wave-equation migration with the phase shift method: Geophysics, 43, 1342–1351
Wave-equation migration with the phase shift method:Crossref | GoogleScholarGoogle Scholar |

Kabbej, A., Baina, R., and Duquest, B., 2005, Data driven automatic aperture optimization for Kirchhoff migration: 75th Ann. Internat. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 270–273.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966
Weak elastic anisotropy:Crossref | GoogleScholarGoogle Scholar |

Tsvankin, I., 1996, P-wave signature and notation for transversely isotropic media: an overview: Geophysics, 61, 467–483
P-wave signature and notation for transversely isotropic media: an overview:Crossref | GoogleScholarGoogle Scholar |

Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59, 1290–1304
Nonhyperbolic reflection moveout in anisotropic media:Crossref | GoogleScholarGoogle Scholar |

Yilmaz, O., and Claerbout, J. F., 1980, Prestack partial migration: Geophysics, 45, 1753–1779
Prestack partial migration:Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., 2005, Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration: Geophysics, 70, E1–E10
Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration:Crossref | GoogleScholarGoogle Scholar |