10.1071/CP24053

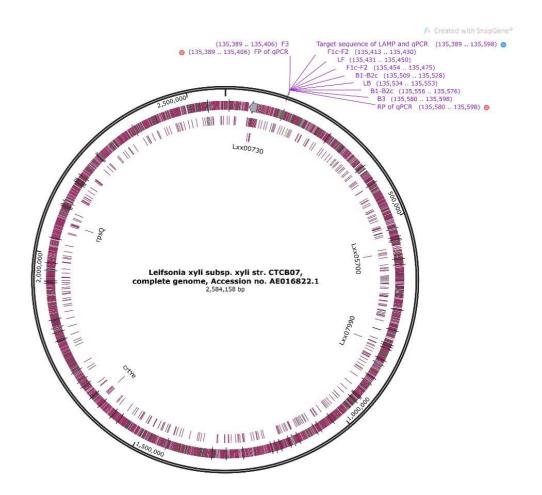
Crop & Pasture Science

Supplementary Material

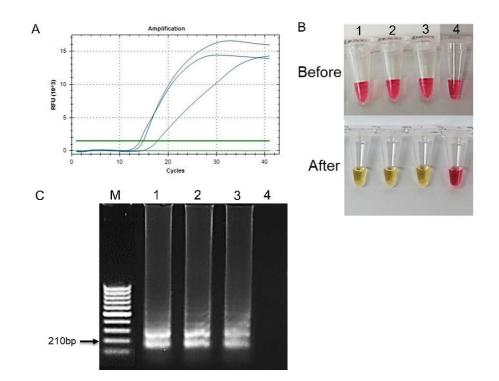
A novel *Leifsonia xyli* subsp. *xyli* quantitative LAMP-based diagnostic correlated with sugarcane ratoon stunting disease rating

Moutoshi Chakraborty^{A,B,*}, Shamsul A. Bhuiyan^{C,D}, Simon Strachan^{B,C}, Sithi Saha^D, Rabbee G. Mahmudunnabi^{B,C}, Nam-Trung Nguyen^C, Muhammad J. A. Shiddiky^{B,C,E}, and Rebecca Ford^{A,B}

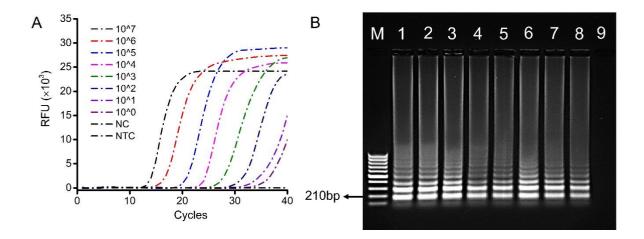
^ACentre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University (GU), Nathan, Qld 4111, Australia.

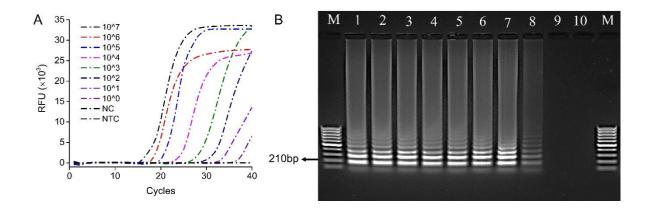

^BSchool of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, Qld 4111, Australia.

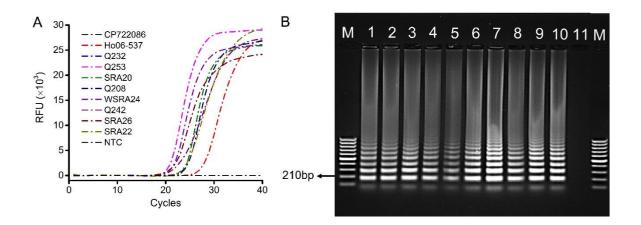
^cQueensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, Qld 4111, Australia.

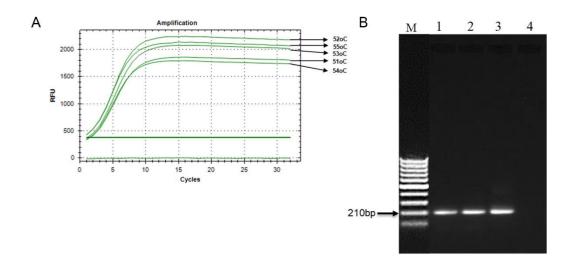

^DSugar Research Australia (SRA), 90 Old Cove Road, Woodford, Qld 4514, Australia.

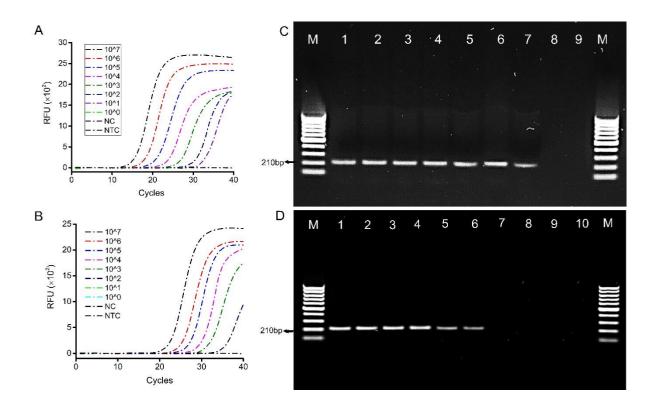
^ERural Health Research Institute (RHRI), Charles Sturt University, Orange, NSW 2800, Australia.

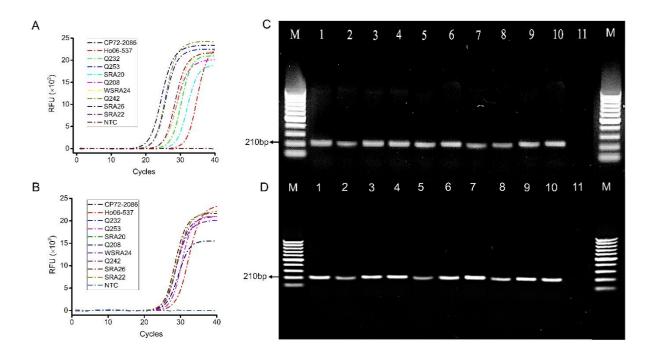

*Correspondence to: Moutoshi Chakraborty Centre for Planetary Health and Food Security (CPHFS), School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, Qld 4111, Australia Email: moutoshi.chakraborty@griffithuni.edu.au


Supplementary Figure S1: SnapGene view of Selected 210bp conserved section of the intergenic spacer (IGS) region between 16S and 23S rRNA genes (GenBank accession no. AE016822.1) corresponding to positions 1,35,389–1,35,598 in *Leifsonia xyli* subsp. *xyli* strain CTCBO7 complete genome along with designated LAMP and qPCR primers.


Supplementary Figure S2: LAMP primer pairs checking with synthetic target. (*a*) Fluorescence LAMP detection for known concentration of synthetic target ($10^7 \text{ copies}/\mu \text{L}$ or 10 pg/ μ L); (*b*) Colorimetric detection of the sample. (*c*) Agarose gel electrophoresis of the sample. Lane M: 100bp⁺ marker; Lanes 1 to 3: $10^7 \text{ copies}/\mu \text{L}$ (10pM) of synthetic target; Lane 4: No Target Control (NTC).


Supplementary Figure S3: (*a*) Florescent LAMP detection and (*b*) Agarose gel electrophoresis of LAMP amplified products for designated concentrations of synthetic target. Lane M: 100bp+ marker; Lanes 1 to 8: 1:10 dilutions of synthetic target $(10^7-10^0 \text{ copies}/\mu\text{L}, \text{ or } 10 \text{ pg}/\mu\text{L}-1\text{ag}/\mu\text{L})$; Lane 9: No Target Control (NTC).


Supplementary Figure S4: (*a*) Florescent LAMP detection and (*b*) Agarose gel electrophoresis of LAMP amplified products for designated number of Lxx cells (10^7-10^0 cells/ μ L) spiked in fresh xylem sap. Lane M: 100bp+ marker; Lanes 1 to 8: 1:10 dilutions of spiking Lxx cells (10^7-10^0 cells/ μ L); Lane 9: No Target Control (NTC); Lane 10: Known number of *Xalb* cells (10^7 cells/ μ L).


Supplementary Figure S5: Field application of assay. (*a*) Florescent LAMP detection and (*b*) Agarose gel electrophoresis of LAMP amplified products for all the xylem sap samples collected from SRA Woodford RSD screening trials. Lane M: 100bp+ marker; Lanes 1 to 10: RSD-infected xylem sap samples- CP72-2086, Ho06-537, Q232, Q253, SRA20, Q208, WSRA24, Q242, SRA26, and SRA22; Lane 11: No Target Control (NTC).

Supplementary Figure S6: qPCR primer pair checking with synthetic target. (*a*) Fluorescence qPCR detection of known concentration of synthetic target; (*b*) Agarose gel electrophoresis of the amplified products. Lane M: $100bp^+$ marker; Lanes 1 to 3: 10^{10} copies/ μ L ($10 \text{ ng}/\mu$ L) of synthetic target; Lane 4: No Target Control (NTC).

Supplementary Figure S7: Validation of the assay using qPCR. Fluorescence qPCR detection for (*a*) Designated concentrations of synthetic target $(10^7-10^0 \text{ copies}/\mu\text{L}, \text{ or } 10 \text{ pg}/\mu\text{L}-1\text{ag}/\mu\text{L})$; (*b*) Purified DNA extracted from known number of *Lxx* cells spiked in the fresh xylem sap $(10^7-10^0 \text{ cells/mL})$. Agarose gel electrophoresis of the amplified products of (*c*) Designated concentrations of synthetic target; Where, Lane M: 100bp+ marker; Lanes 1 to 8: Serial dilutions of synthetic target $(10^7-10^0 \text{ copies}/\mu\text{L}, \text{ or } 10 \text{ pg}/\mu\text{L}-1\text{ag}/\mu\text{L})$; Lane 9: No Target Control (NTC); (d) Purified DNA extracted from a known number of *Lxx* cells spiked in the fresh sap $(10^7-10^0 \text{ cells/mL})$. Where, Lane M: 100bp+ marker; Lanes 1 to 8: Purified DNA extracted from known number of *Lxx* cells spiked in the fresh sap $(10^7-10^0 \text{ cells/mL})$; Lane 9: No Target No Target Control (NTC); Lane 10: Negative control (NC).

Supplementary Figure S8: Field sample validation with qPCR. Fluorescence qPCR detection for all the analyzed xylem sap samples collected from SRA Woodford RSD screening trials; (*a*) Heat-induced DNA isolation technique; (*b*) Commercial kit-based DNA extraction technique. Agarose gel electrophoresis of qPCR amplified products. Where, Lane M: 100bp+ marker; Lanes 1 to 10: RSD-infected xylem sap samples- CP72-2086, Ho06-537, Q232, Q253, SRA20, Q208, WSRA24, Q242, SRA26, and SRA22; Lane 11: No Target Control (NTC).