Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Three Dimensional Cs-γ-CD-MOFs and the Adsorption of Myricetin

Lan Xie A B , Yangyang Zheng A , Jie Deng A , Wenkang Jiang A and Huijun Liu https://orcid.org/0000-0002-7126-4738 A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China.

B Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan, 421001, China.

C Corresponding author. Email: liuhuijun@usc.edu.cn

Australian Journal of Chemistry 74(9) 676-683 https://doi.org/10.1071/CH21156
Submitted: 5 July 2021  Accepted: 23 August 2021   Published: 21 September 2021

Abstract

A new Cs-γ-CD-MOF material obtained in colourless large crystals and with a three-dimensional porous structure containing coordinated by cesium ions and γ-cyclodextrin was synthesised by an improved vapour diffusion method. The chemical formula of the Cs-γ-CD-MOF material was C24H34CsO20, with the I4 space group. Compared with the traditional solvent vapour diffusion method (7 days), this method is advantageous for rapid crystal formation (1 day). Simultaneously, the drug adsortion capacity of γ-CD and Cs-γ-CD-MOFs for myricetin was compared and the results indicated that Cs-γ-CD-MOFs (280.05 mg g−1) have a higher drug adsorption capacity than γ-CD (142.92 mg g−1). Finally, the energy and conformation of the Cs-γ-CD-MOF material for adsorbing the drug myricetin were obtained through molecular docking.

Keywords: MOF, γ-CD, Cs-γ-CD-MOFs, adsorption, myricetin, molecular docking.


References

[1]  Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar | 21688849PubMed |

[2]  P. Yang, X. Song, C. Jia, H.-S. Chen, J. Ind. Eng. Chem. 2018, 62, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 2017, 46, 4774.
         | Crossref | GoogleScholarGoogle Scholar | 28621344PubMed |

[4]  Y. V. Kaneti, J. Zhang, Y.-B. He, Z. Wang, S. Tanaka, M. S. A. Hossain, et al. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 15356.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Wang, J. Kim, J. Tang, M. Kim, H. Lim, V. Malgras, et al. Chem 2020, 6, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Wang, J. Kim, J. Tang, J. Na, Y. M. Kang, M. Kim, et al. Angew. Chem. Int. Ed. Engl. 2020, 59, 2066.
         | Crossref | GoogleScholarGoogle Scholar | 31846187PubMed |

[7]  J. Tang, R. R. Salunkhe, H. Zhang, V. Malgras, T. Ahamad, S. M. Alshehri, et al. Sci. Rep. 2016, 6, 30295.
         | Crossref | GoogleScholarGoogle Scholar | 27471193PubMed |

[8]  C. Young, J. Kim, Y. V. Kaneti, Y. Yamauchi, ACS Appl. Energy Mater. 2018, 1, 2007.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J. Li, W. Xia, J. Tang, H. Tan, J. Wang, Y. V. Kaneti, et al. Nanoscale Horiz. 2019, 4, 1006.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Gao, J. Tang, X. Yu, S. Tang, K. Ozawa, T. Sasaki, et al. Nano Energy 2020, 70, 104444.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. Zhang, W. Xia, Q. Yang, Y. Valentino Kaneti, X. Xu, S. M. Alshehri, et al. Chem. Eng. J. 2020, 396, 125154.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  K. Ao, Q. Wei, W. A. Daoud, ACS Appl. Mater. Interfaces 2020, 12, 33595.
         | Crossref | GoogleScholarGoogle Scholar | 32628440PubMed |

[13]  H. Zhang, C. Wang, W. Zhang, M. Zhang, J. Qi, J. Qian, et al. J. Mater. Chem. A Mater. Energy Sustain. 2021, 9, 12807.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. W. Xu, Y. P. Wu, W. W. Dong, J. Zhao, X. Q. Wu, D. S. Li, et al. Small 2017, 13, 1602996.
         | Crossref | GoogleScholarGoogle Scholar | 28418186PubMed |

[15]  H. Zhao, J. Ni, J. J. Zhang, S. Q. Liu, Y. J. Sun, H. Zhou, et al. Chem. Sci. 2018, 9, 2918.
         | Crossref | GoogleScholarGoogle Scholar | 29732075PubMed |

[16]  W.-T. Koo, J.-S. Jang, I.-D. Kim, Chem 2019, 5, 1938.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. Gumilar, Y. V. Kaneti, J. Henzie, S. Chatterjee, J. Na, B. Yuliarto, et al. Chem. Sci. 2020, 11, 3644.
         | Crossref | GoogleScholarGoogle Scholar | 34094053PubMed |

[18]  S. Rapti, D. Sarma, S. A. Diamantis, E. Skliri, G. S. Armatas, A. C. Tsipis, et al. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 14707.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  W. Zhao, Y. W. Zheng, L. Cui, D. D. Jia, D. Wei, R. K. Zheng, et al. Chem. Eng. J. 2019, 371, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Wang, B. An, W. Lin, ACS Catal. 2019, 9, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  L. Liu, Z. Yao, Y. Ye, Y. Yang, Q. Lin, Z. Zhang, et al. J. Am. Chem. Soc. 2020, 142, 9258.
         | Crossref | GoogleScholarGoogle Scholar | 32336085PubMed |

[22]  C. Gu, J. Liu, J. Hu, D. Wu, Fuel 2020, 271, 117598.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. S. Qin, S. Yuan, C. Lollar, J. Pang, A. Alsalme, H. C. Zhou, Chem. Commun. 2018, 54, 4231.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Samaniyan, M. Mirzaei, R. Khajavian, H. Eshtiagh-Hosseini, C. Streb, ACS Catal. 2019, 9, 10174.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. Li, M. Lu, Y. Wu, Q. Ji, H. Xu, J. Gao, et al. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 18215.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Mi, Y. Sun, L. Shi, T. Li, ACS Appl. Mater. Interfaces 2020, 12, 7879.
         | Crossref | GoogleScholarGoogle Scholar | 31983198PubMed |

[27]  Y. Yan, C. Li, Y. Wu, J. Gao, Q. Zhang, J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 15245.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Faraji Dizaji, M. Hasani Azerbaijan, N. Sheisi, P. Goleij, T. Mirmajidi, F. Chogan, et al. Int. J. Biol. Macromol. 2020, 164, 1461.
         | Crossref | GoogleScholarGoogle Scholar | 32735933PubMed |

[29]  J. Xia, Y. Xue, B. Lei, L. Xu, M. Sun, N. Li, et al. Natl. Sci. Rev. 2021, 8, nwaa221.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  H. D. Lawson, S. P. Walton, C. Chan, ACS Appl. Mater. Interfaces 2021, 13, 7004.
         | Crossref | GoogleScholarGoogle Scholar | 33554591PubMed |

[31]  Y. V. Kaneti, S. Dutta, M. S. A. Hossain, M. J. A. Shiddiky, K. L. Tung, F. K. Shieh, et al. Adv. Mater. 2017, 29, 1700213.
         | Crossref | GoogleScholarGoogle Scholar | 28833624PubMed |

[32]  Y. Xue, S. Zheng, H. Xue, H. Pang, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 7301.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  T. K. Yan, A. Nagai, W. Michida, K. Kusakabe, S. B. Yusup, Procedia Eng. 2016, 148, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. Yang, W. Zhao, A. Shkurenko, Y. Belmabkhout, M. Eddaoudi, X. Dong, et al. J. Am. Chem. Soc. 2019, 141, 1847.
         | Crossref | GoogleScholarGoogle Scholar | 30609360PubMed |

[35]  T. Rajkumar, D. Kukkar, K.-H. Kim, J. R. Sohn, A. Deep, J. Ind. Eng. Chem. 2019, 72, 50.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  A. Yang, H. Liu, Z. Li, L. Li, W. Li, K. Liu, Polyhedron 2019, 159, 116.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. S. Forgan, R. A. Smaldone, J. J. Gassensmith, H. Furukawa, D. B. Cordes, Q. Li, et al. J. Am. Chem. Soc. 2012, 134, 406.
         | Crossref | GoogleScholarGoogle Scholar | 22092094PubMed |

[38]  H. Li, N. Lv, X. Li, B. Liu, J. Feng, X. Ren, et al. Nanoscale 2017, 9, 7454.
         | Crossref | GoogleScholarGoogle Scholar | 28530283PubMed |

[39]  B. Liu, H. Li, X. Xu, X. Li, N. Lv, V. Singh, et al. Int. J. Pharm. 2016, 514, 212.
         | Crossref | GoogleScholarGoogle Scholar | 27863664PubMed |

[40]  J. Liu, T. Y. Bao, X. Y. Yang, P. P. Zhu, L. H. Wu, J. Q. Sha, et al. Chem. Commun. 2017, 53, 7804.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  B. Liu, Y. He, L. Han, V. Singh, X. Xu, T. Guo, et al. Cryst. Growth Des. 2017, 17, 1654.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  W. Xia, B. Zheng, T. Li, F. Lian, Y. Lin, R. Liu, Carbohydr. Polym. 2020, 250, 116848.
         | Crossref | GoogleScholarGoogle Scholar | 33049813PubMed |

[43]  Y. Xie, Y. Wang, W. Xiang, Q. Wang, Y. Cao, Mini Rev. Med. Chem. 2020, 20, 123.
         | Crossref | GoogleScholarGoogle Scholar | 31648635PubMed |

[44]  H. Liu, Z. Li, M. Takafuji, H. Ihara, H. Qiu, Food Chem. 2017, 229, 208.
         | Crossref | GoogleScholarGoogle Scholar | 28372166PubMed |

[45]  Y. Wan, M. Wang, Q. Fu, L. Wang, D. Wang, K. Zhang, et al. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1097–1098, 1.
         | Crossref | GoogleScholarGoogle Scholar | 30195070PubMed |

[46]  W. Jiang, H. Liu, Q. Liao, T. Tang, J. Liu, Z. Liu, et al. Polyhedron 2021, 196, 114983.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  L. Deng, X. Kang, T. Quan, L. Yang, S. Liu, K. Zhang, et al. ACS Appl. Mater. Interfaces 2021, 13, 33449.
         | Crossref | GoogleScholarGoogle Scholar | 34240595PubMed |