Simultaneous diversity-oriented synthesis of benzothiazoles and related diverse analogues by iodine-catalyzed intramolecular cyclization from identical substrates
Meng Cui A , Xue-Lin Wang A , Mengzhou Wang A and Jian-Wu Xie A *A
Abstract
A facile oxidative cyclization of β-ketothioamides for the simultaneous formation of a compound library similar to natural product benzothiazole derivatives has been developed. The oxidative cyclization of β-ketothioamides resulted in the simultaneous formation of four classes of previously unknown benzothiazole derivatives. This chemistry’s versatility adds a valuable component to the methodology for obtaining benzothiazole derivatives.
Keywords: β-ketothioamides, benzothiazole derivatives, chemistry’s versatility, cascade reaction, combinatorial chemistry, diversity-oriented synthesis, oxidative cyclisation, iIodine-catalysed.
References
1 Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 1991; 354(6348): 84-86.
| Crossref | Google Scholar |
2 Bunin BA, Plunkett MJ, Ellman JA. The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc Natl Acad Sci USA 1994; 91(11): 4708-4712.
| Crossref | Google Scholar | PubMed |
3 Thompson LA, Ellman JA. Synthesis and applications of small molecule libraries. Chem Rev 1996; 96(1): 555-600.
| Crossref | Google Scholar | PubMed |
4 Keating TA, Armstrong RW. A remarkable two-step synthesis of diverse 1,4-benzodiazepine-2,5-diones using the Ugi four-component condensation. J Org Chem 1996; 61: 8935-8939.
| Crossref | Google Scholar | PubMed |
5 Orzáez M, Mora P, Mondragón L, Pérez-Payá E, Vicent MJ. Solid-phase chemistry: a useful tool to discover modulators of protein interactions. Int J Pept Res Ther 2007; 13(1): 281-293.
| Crossref | Google Scholar |
6 Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998; 280: 1735-1737.
| Crossref | Google Scholar | PubMed |
7 Guillier F, Orain D, Bradley M. Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 2000; 100(6): 2091-2158.
| Crossref | Google Scholar |
8 Kassel DB. Combinatorial chemistry and mass spectrometry in the 21st century drug discovery laboratory. Chem Rev 2001; 101(2): 255-267.
| Crossref | Google Scholar | PubMed |
9 Corbett PT, Leclaire J, Vial L, West KR, Wietor JL, Sanders JKM, Otto S. Dynamic combinatorial chemistry. Chem Rev 2006; 106(9): 3652-3711.
| Crossref | Google Scholar | PubMed |
10 Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000; 287(5460): 1964-1969.
| Crossref | Google Scholar | PubMed |
11 Burke MD, Schreiber SL. A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 2004; 43(1): 46-58.
| Crossref | Google Scholar | PubMed |
12 O’Connor CJ, Beckmann HS, Spring DR. Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem Soc Rev 2012; 41(12): 4444-4456.
| Crossref | Google Scholar | PubMed |
13 Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem 2013; 28(2): 240-266.
| Crossref | Google Scholar | PubMed |
14 Ben-Alloum A, Bakkas S, Soufiaoui M. Nouvelle voie de synthèse des 2-arylbenzothiazoles transfert d'electrons activé par micro-ondes. Tetrahedron Lett 1997; 38: 6395-6396.
| Crossref | Google Scholar |
15 Seijas JA, Vázquez-Tato MP, Carballido-Reboredo MR, Crecente-Campo J, Romar-López L. Lawesson’s reagent and microwaves: a new efficient access to benzoxazoles and benzothiazoles from carboxylic acids under solvent-free conditions. Synlett 2007; 2007(2): 0313-0317.
| Crossref | Google Scholar |
16 Cheng Y, Yang J, Qu Y, Li P. Aerobic visible-light photoredox radical C–H functionalization: catalytic synthesis of 2-substituted benzothiazoles. Org Lett 2012; 14(1): 98-101.
| Crossref | Google Scholar | PubMed |
17 Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A. Fe-catalysed oxidative C–H functionalization/C–S bond formation. Chem Commun 2012; 48(1): 76-78.
| Crossref | Google Scholar | PubMed |
18 Rey V, Soria-Castro SM, Argüello JE, Peñéñory AB. Photochemical cyclization of thioformanilides by chloranil: an approach to 2-substituted benzothiazoles. Tetrahedron Lett 2009; 50(33): 4720-4723.
| Crossref | Google Scholar |
19 Bose DS, Idrees M. Hypervalent iodine mediated intramolecular cyclization of thioformanilides: expeditious approach to 2-substituted benzothiazoles. J Org Chem 2006; 71(21): 8261-3.
| Crossref | Google Scholar | PubMed |
20 Inamoto K, Hasegawa C, Kawasaki J, Hiroya K, Doi T. Use of molecular oxygen as a reoxidant in the synthesis of 2‐substituted benzothiazoles via palladium‐catalyzed C–H functionalization/intramolecular C–S bond formation. Adv Synth Catal 2010; 352: 2643-2655.
| Crossref | Google Scholar |
21 Gong P, Wang J, Yao WB, Xie XS, Xie JW. Diastereoselective and enantioselective formal [4+1] ylide annulation leading to optically active isoxazoline N-oxides. Adv Synth Catal 2022; 364: 1185-1199.
| Crossref | Google Scholar |
22 Yao WB, Xie XS, Liu JN, Xie JW. Diversity-oriented and diastereoselective synthesis of diverse polycyclic thieno(2,3-b)-quinoline derivatives using a synergistic strategy. Org Biomol Chem 2022; 20: 1982-1993.
| Crossref | Google Scholar | PubMed |
23 Chen LJ, Yu JH, He B, Xie JW, Liu YX, Zhu WD. Umpolung strategy for the synthesis of chiral dispiro[2-amino-4,5-dihydrofuran-3-carbonitrile]bisoxindoles. J Org Chem 2020; 85(12): 7793-7802.
| Crossref | Google Scholar | PubMed |
24 Wei PS, Wang MX, Xu DC, Xie JW. ChemInform abstract: synthesis of 2,3‐dihydrothieno(2,3‐b)quinolines and thieno(2,3‐–)quinolines via an unexpected domino aza‐MBH/alkylation/aldol reaction. ChemInform 2016; 47: 1216-1222.
| Crossref | Google Scholar |
25 Zeng XM, Xie JW. Enantioselective synthesis of ring-fused spiroannulated 1,2,3-thiadiazole derivatives. J Org Chem 2016; 81(9): 3553-3559.
| Crossref | Google Scholar | PubMed |
26 Zeng XM, Meng CY, Bao JX, Xu DC, Xie JW, Zhu WD. Enantioselective construction of polyfunctionalized spiroannulated dihydrothiophenes via a formal thio [3+2] cyclization. J Org Chem 2015; 80(22): 11521-11528.
| Crossref | Google Scholar | PubMed |
27 Wang HS, Miao JY, Zhao LF. Application of iodine as an effective catalyst to organic synthesis. Chin J Org Chem 2005; 25(6): 615-618.
| Crossref | Google Scholar |
28 Yadav JS, Satyanarayana M, Raghavendra S, Balanarsaiah E. Chemoselective hydrolysis of terminal isopropylidene acetals in acetonitrile using molecular iodine as a mild and efficient catalyst. Tetrahedron Lett 2005; 46(50): 8745-8748.
| Crossref | Google Scholar |
29 Bhosale RS, Sarda SR, Ardhapure SS, Jadhav WN, Bhusare SR, Pawar RP. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst. Cheminform 2005; 46(5): 7183-7186.
| Crossref | Google Scholar |
30 Mori N, Togo H. Facile oxidative conversion of alcohols to esters using molecular iodine. Tetrahedron 2005; 61(24): 5915-5925.
| Crossref | Google Scholar |
31 Sun J, Dong Y, Cao L, Wang X, Wang S, Hu Y. Highly efficient chemoselective deprotection of O,O-acetals and O,O-ketals catalyzed by molecular iodine in acetone. J Org Chem 2004; 69(25): 8932-8934.
| Crossref | Google Scholar | PubMed |
32 Ji SJ, Wang SY, Zhang Y, Loh TP. Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 2004; 60(9): 2051-2055.
| Crossref | Google Scholar |
33 Lin C, Hsu J, Sastry MNV, Fang H, Tu Z, Liu JT, Ching-Fa Y. I2-catalyzed Michael addition of indole and pyrrole to nitroolefins. Tetrahedron 2005; 61(12): 11751-11757.
| Crossref | Google Scholar |