Halogenation of calix[4]arenes by [I(py)2]I3·2I2†
Peter Hahn A , Till Köhler A , Martin Börner A and Berthold Kersting A *A Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany.
Australian Journal of Chemistry 75(9) 780-785 https://doi.org/10.1071/CH22031
Submitted: 8 February 2022 Accepted: 6 April 2022 Published: 26 May 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
The iodination of calix[4]arene and one of its monofunctionalised derivatives by bis(pyridine)iodonium(I) triiodide, [I(py)2]I3·2I2 has been studied. The iodination reactions proceed in good yields at room temperature (r.t.) without any co-reagents affording the corresponding tetra- and tri-substituted calix[4]arenes. Only electron-rich phenol groups are iodinated by [I(py)2]I3·2I2. Phenolether or Schiff-base type arene rings remain unaffected. The crystal structure of the iodination reagent, first published in 1961, has been re-determined which a higher precision. The crystal structures of the two per-iodinated calix[4]arenes show that self-inclusion occurs in the solid state.
Keywords: bis(pyridinium)iodonium triiodide, calixarenes, coordination chemistry: structures, hypervalent compounds, iodine, polyhalides, Schiff base, selective iodination reagent, self‐inclusion.
References
[1] de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More. Weinheim, Germany: Wiley-VCH; 2014.[2] Gribble GW. Naturally Occurring Organohalogen Compounds - A Comprehensive Update. Wien, Austria: Springer; 2010.
[3] NL Sloan, A Sutherland, Synthesis 2016, 48, 2969.
| Crossref | GoogleScholarGoogle Scholar |
[4] W Hao, Y Liu, Beilstein J Org Chem 2015, 11, 2132.
| Crossref | GoogleScholarGoogle Scholar | 26664634PubMed |
[5] VVKM Kandepi, N Narender, Synthesis 2012, 44, 15.
| Crossref | GoogleScholarGoogle Scholar |
[6] A Podgoršek, M Zupan, J Iskra, Angew Chem, Int Ed 2009, 48, 8424.
| Crossref | GoogleScholarGoogle Scholar |
[7] S Stavber, M Jereb, M Zupan, Synthesis 2008, 10, 1487.
| Crossref | GoogleScholarGoogle Scholar |
[8] J Barluenga, JM Gonzalez, MA Garcia-Martin, PJ Campos, G Asensio, J Org Chem 1993, 58, 2058.
| Crossref | GoogleScholarGoogle Scholar |
[9] J Barluenga, MA Rodriguez, PJ Campos, J Org Chem 1990, 55, 3104.
| Crossref | GoogleScholarGoogle Scholar |
[10] M Sdahl, J Conrad, C Braunberger, U Beifuss, RSC Advances 2019, 9, 19549.
| Crossref | GoogleScholarGoogle Scholar | 35519358PubMed |
[11] D Gutsche, Calixarenes: An Introduction, 2nd edn. Cambridge: RSC Publishing; 2008.
[12] V Böhmer, Angew Chem Int Ed Engl 1995, 34, 713.
| Crossref | GoogleScholarGoogle Scholar |
[13] Steed JW, Atwood JL, Supramolecular Chemistry, 2nd edn. Chichester: John Wiley & Sons; 2009.
[14] PF Hudrlik, WD Arasho, AM Hudrlik, J Org Chem 2007, 72, 8107.
| Crossref | GoogleScholarGoogle Scholar | 17850095PubMed |
[15] A Arduini, G Giorgi, A Pochini, A Secchi, F Ugozzoli, J Org Chem 2001, 66, 8302.
| Crossref | GoogleScholarGoogle Scholar | 11735507PubMed |
[16] X Cao, L Luo, F Zhang, F Miao, D Tian, H Li, Tetrahedron Lett 2014, 55, 2029.
| Crossref | GoogleScholarGoogle Scholar |
[17] OG Barton, B Neumann, H-G Stammler, J Mattay, Org Biomol Chem 2008, 6, 104.
| Crossref | GoogleScholarGoogle Scholar | 18075654PubMed |
[18] N Kuhnert, A Le-Gresley, Tetrahedron Lett 2008, 49, 1274.
| Crossref | GoogleScholarGoogle Scholar |
[19] JD Van Loon, A Arduini, L Coppi, W Verboom, A Pochini, R Ungaro, S Harkema, DN Reinhoudt, J Org Chem 1990, 55, 5639.
| Crossref | GoogleScholarGoogle Scholar |
[20] A Arduini, A Pochini, A Rizzi, AR Sicuri, R Ungaro, Tetrahedron Lett 1990, 31, 4653.
| Crossref | GoogleScholarGoogle Scholar |
[21] A Gunji, K Takahashi, Synth Commun 1998, 28, 3933.
| Crossref | GoogleScholarGoogle Scholar |
[22] P Timmerman, W Verboom, DN Reinhoudt, A Arduini, S Grandi, AR Sicuri, A Pochini, R Ungaro, Synthesis 1994, 185.
| Crossref | GoogleScholarGoogle Scholar |
[23] A Arduini, WM McGregor, A Pochini, A Secchi, F Ugozzoli, R Ungaro, J Org Chem 1996, 61, 6881.
| Crossref | GoogleScholarGoogle Scholar | 11667582PubMed |
[24] E Pinkhassik, I Stibor, A Casnati, R Ungaro, J Org Chem 1997, 62, 8654.
| Crossref | GoogleScholarGoogle Scholar |
[25] AMA van Wageningen, P Timmerman, JPM van Duynhoven, W Verboom, FCJM van Veggel, DN Reinhoudt, Chem Eur J 1997, 3, 639.
| Crossref | GoogleScholarGoogle Scholar |
[26] B Klenke, W Friedrichsen, J Chem Soc, Perkin Trans 1998, 1, 3377.
| Crossref | GoogleScholarGoogle Scholar |
[27] O Hassel, H Hope, Acta Chem Scand 1961, 15, 407.
| Crossref | GoogleScholarGoogle Scholar |
[28] LJ Barbour, GW Orr, JL Atwood, Chem Commun 1997, 1439.
| Crossref | GoogleScholarGoogle Scholar |
[29] J Barluenga, Pure Appl Chem 1999, 71, 431.
| Crossref | GoogleScholarGoogle Scholar |
[30] J Barluenga, F González-Bobes, MC Murguía, SR Ananthoju, JM González, Chem-Eur J 2004, 10, 4206.
| Crossref | GoogleScholarGoogle Scholar | 15352103PubMed |
[31] RW Troff, T Mäkelä, F Topić, A Valkonen, K Raatikainen, K Rissanen, Eur J Org Chem 2013, 1617.
| Crossref | GoogleScholarGoogle Scholar |
[32] PH Svensson, L Kloo, Chem Rev 2003, 103, 1649.
| Crossref | GoogleScholarGoogle Scholar | 12744691PubMed |
[33] N Beyer, G Steinfeld, V Lozan, S Naumov, R Flyunt, B Abel, B Kersting, Chem Eur J 2017, 23, 2303.
| Crossref | GoogleScholarGoogle Scholar | 27787918PubMed |
[34] M Golecki, N Beyer, G Steinfeld, V Lozan, S Voitekhovich, M Sehabi, J Möllmer, H-J Krüger, B Kersting, Angew Chem Int Ed 2014, 37, 9949.
| Crossref | GoogleScholarGoogle Scholar |
[35] M Bedin, A Karim, M Reitti, A-CC Carlsson, F Topić, M Cetina, F Pan, V Havel, F Al-Ameri, V Sindelar, K Rissanen, J Gräfenstein, M Erdélyi, Chem Sci 2015, 6, 3746.
| Crossref | GoogleScholarGoogle Scholar | 29218144PubMed |
[36] A Bondi, J Phys Chem 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar |
[37] CA Hunter, Angew Chem, Int Ed Engl 1993, 32, 1584.
| Crossref | GoogleScholarGoogle Scholar |
[38] LJ Barbour, GW Orr, JL Atwood, Chem Commun 1997, 1439.
| Crossref | GoogleScholarGoogle Scholar |
[39] M Strobel, K Kita-Tokarczyk, A Taubert, C Vebert, PA Heiney, M Chami, W Meier, Adv Funct Mater 2006, 16, 252.
| Crossref | GoogleScholarGoogle Scholar |
[40] Stoe & Cie. X-AREA; V1.90. Darmstadt, Germany: Stoe & Cie: 2020.
[41] GM Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst 2015, C71, 3.
[42] GM Sheldrick, SHELXT Integrated space-group and crystal structure determination. Acta Cryst 2015, C71, 3.
| SHELXT Integrated space-group and crystal structure determination.Crossref | GoogleScholarGoogle Scholar |
[43] OV Dolomanov, LJ Bourhis, RJ Gildea, JAK Howard, H Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 2009, 42, 339.
| OLEX2: a complete structure solution, refinement and analysis program.Crossref | GoogleScholarGoogle Scholar |
[44] Spek AL. PLATON - A Multipurpose Crystallographic Tool; Utrecht University, Utrecht, The Netherlands, 2000.
[45] LJ Farrugia, ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface. J Appl Cryst 1997, 30, 565.
| ORTEP-3 for Windows – a version of ORTEP-III with a graphical user interface.Crossref | GoogleScholarGoogle Scholar |
[46] Cason C, Froehlich T, Kopp N, Parker R. POV-Ray for Windows, version 3.6.2msvc9.win64.