Syntheses and structural characterisation of some heteroleptic aluminium(III) formamidinates
Areej K. Aldabbagh A , Reza Takjoo A B , Atefeh Najafi A , Zhifang Guo A , Md Elius Hossain A , Nazli E. Rad A , Jun Wang A and Peter C. Junk A *A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Australian Journal of Chemistry 75(4) 265-275 https://doi.org/10.1071/CH21181
Submitted: 29 July 2021 Accepted: 18 November 2021 Published: 7 April 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
A range of heteroleptic aluminium(III) formamidinate/formamidine complexes have been prepared involving metathesis reactions between AlX3 (X = Cl, Br, I) and alkali metal formamidinates. The mononuclear, bis-substituted complexes of the composition [Al(XylForm)2Cl] (XylForm = N,N′-bis(2,6-dimethylphenyl)formamidinate) (1), [Al(XylForm)2I]·PhMe (2), [Al(DippForm)2Cl] (DippForm = N,N′-bis(2,6-diisopropylphenyl)formamidinate) (3), [Al(DippForm)2I] (4), mono-substituted complexes of [Al(DippForm)Cl2(thf)] (5), [Al(DippForm)ClBr(thf)] (6), [Al(XylFormH)Br3] (7) and [Al(DippFormH)Br3] (8) were synthesised. [Al3(XylForm)2(µ3-O)(OH)Cl4]2·PhMe (9), was isolated in the reaction between K(XylForm) and AlCl3 as a trinuclear compound.
Keywords: aluminium amides, aluminium complexes, crystal structures, formamidinates (N ligands), heteroleptic aluminium(III) complexes, metathesis reactions, N‐donor ligands, synthesis.
References
[1] S Dagorne, RF Jordan, VG Young, Organometallics 1999, 18, 4619.| Crossref | GoogleScholarGoogle Scholar |
[2] A Hilger, JP Gisselbrecht, RR Tykwinski, C Boudon, M Schreiber, RE Martin, HP Lüthi, M Gross, F Diederich, J Am Chem Soc 1997, 119, 2069.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) GB Deacon, PC Junk, D Werner, Chem Eur J 2016, 22, 160.
| Crossref | GoogleScholarGoogle Scholar | 26538406PubMed |
(b) ML Cole, GB Deacon, CM Forsyth, PC Junk, K Konstas, J Wang, H Bittig, D Werner, Chem Eur J 2013, 19, 1410.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D Werner, GB Deacon, PC Junk, R Anwander, Chem Eur J 2014, 20, 4426.
| Crossref | GoogleScholarGoogle Scholar | 24643972PubMed |
(b) GB Deacon, PC Junk, D Werner, Polyhedron 2016, 103, 178.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z Guo, V Blair, GB Deacon, PC Junk, Dalton Trans 2020, 49, 13588.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) FT Edelmann, Coord Chem Rev 1994, 137, 403.
| Crossref | GoogleScholarGoogle Scholar |
(b) J Barker, M Kilner, Coord Chem Rev 1994, 133, 219.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) GB Deacon, ME Hossain, PC Junk, M Salehisaki, Coord Chem Rev 2017, 340, 247.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z Guo, R Huo, YQ Tan, V Blair, GB Deacon, PC Junk, Coord Chem Rev 2020, 415, 213232.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) ML Cole, AJ Davies, C Jones, PC Junk, New J Chem 2005, 29, 1404.
| Crossref | GoogleScholarGoogle Scholar |
(b) SP Green, C Jones, PC Junk, K-A Lippert, A Stasch, Chem Commun 2006, 3978.
| Crossref | GoogleScholarGoogle Scholar |
(c) A Stasch, CM Forsyth, C Jones, PC Junk, New J Chem 2008, 32, 829.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) T Chlupaty, A Ruzicka, Coord Chem Rev 2016, 314, 103.
| Crossref | GoogleScholarGoogle Scholar |
(b) ST Barry, Coord Chem Rev 2013, 247, 3192.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) G Linti, H Schnockel, Coord Chem Rev 2000, 206–207, 285.
| Crossref | GoogleScholarGoogle Scholar |
(b) K Hobson, CJ Carmalt, C Bakewell, Chem Sci 2020, 11, 6942.
| Crossref | GoogleScholarGoogle Scholar |
(c) J Hicks, P Vasko, JM Goicoechea, S Aldridge, Nature 2018, 557, 92.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) GI Nikonov, ACS Catal 2017, 7, 7257.
| Crossref | GoogleScholarGoogle Scholar |
(b) A Arbaoui, C Redshaw, Polym Chem 2010, 1, 801.
| Crossref | GoogleScholarGoogle Scholar |
(c) J Wu, T Yu, C Chen, C Lin, Coord Chem Rev 2006, 250, 602.
| Crossref | GoogleScholarGoogle Scholar |
(d) P Bag, A Porzelt, PJ Altmann, S Inoue, J Am Chem Soc 2017, 139, 14384.
| Crossref | GoogleScholarGoogle Scholar |
(e) C Weetman, P Bag, T Szilvási, C Jandl, S Inoue, Angew Chem Int Ed 2019, 58, 10961.
| Crossref | GoogleScholarGoogle Scholar |
[11] RJ Baker, C Jones, PC Junk, M Kloth, Angew Chem Int Ed 2004, 43, 3852.
| Crossref | GoogleScholarGoogle Scholar |
[12] C Jones, PC Junk, M Kloth, KM Proctor, A Stasch, Polyhedron 2006, 25, 1592.
| Crossref | GoogleScholarGoogle Scholar |
[13] ML Cole, PC Junk, Z Anorg Allg Chem 2015, 641, 2233.
| Crossref | GoogleScholarGoogle Scholar |
[14] LA Lesikar, AF Richards, Polyhedron 2010, 29, 1411.
| Crossref | GoogleScholarGoogle Scholar |
[15] S Hamidi, HM Dietrich, D Werner, LN Jende, C Maichle-Mosser, KW Tornroos, GB Deacon, PC Junk, R Anwander, Eur J Inorg Chem 2013, 2460.
| Crossref | GoogleScholarGoogle Scholar |
[16] PC Junk, ML Cole, Chem Commun 2007, 1579.
| Crossref | GoogleScholarGoogle Scholar |
[17] G Bai, S Singh, HW Roesky, M Noltemeyer, H-G Schmidt, J Am Chem Soc 2005, 127, 3449.
| Crossref | GoogleScholarGoogle Scholar | 15755164PubMed |
[18] H Zhu, J Chai, C He, G Bai, HW Roesky, V Jancik, H-G Schmidt, M Noltemeyer, Organometallics 2005, 24, 380.
| Crossref | GoogleScholarGoogle Scholar |
[19] E Le Roux, F Nief, F Jaroschik, KW Tornroos, R Anwander, Dalton Trans 2007, 4866.
| Crossref | GoogleScholarGoogle Scholar | 17955139PubMed |
[20] M Zimmermann, KW Törnroos, R Anwander, Angew Chem Int Ed 2008, 47, 775.
| Crossref | GoogleScholarGoogle Scholar |
[21] M Zimmermann, KW Törnroos, H Sitzmann, R Anwander, Chem Eur J 2008, 14, 7266.
| Crossref | GoogleScholarGoogle Scholar | 18604850PubMed |
[22] D Robert, TP Spaniol, J Okuda, Eur J Inorg Chem 2008, 2801.
| Crossref | GoogleScholarGoogle Scholar |
[23] M Zimmermann, J Volbeda, KW Törnroos, R Anwander, C R Chim 2010, 13, 651.
| Crossref | GoogleScholarGoogle Scholar |
[24] S Hamidi, LN Jende, H Martin Dietrich, C Maichle-Mössmer, KW Törnroos, GB Deacon, PC Junk, R Anwander, Organometallics 2013, 32, 1209.
| Crossref | GoogleScholarGoogle Scholar |
[25] DP Daniels, GB Deacon, F Jaroschik, PC Junk, Dalton Trans 2012, 41, 267.
| Crossref | GoogleScholarGoogle Scholar | 22020558PubMed |
[26] J Hammod, F Abou-Khalil, T Roisnel, V Dorcet, C Bour, V Gandon, D Leboeuf, JF Carpentier, Y Sarazin, Dalton Trans 2020, 49, 13017.
| Crossref | GoogleScholarGoogle Scholar |
[27] M Brym, CM Forsyth, C Jones, PC Junk, RP Rose, A Stasch, DR Turner, Dalton Trans 2007, 3282.
| Crossref | GoogleScholarGoogle Scholar | 17893774PubMed |
[28] CN Rowley, GA DiLabio, ST Barry, Inorg Chem 2005, 44, 1983.
| Crossref | GoogleScholarGoogle Scholar | 15762725PubMed |
[29] RJ Keaton, LA Koterwas, JC Fettinger, LR Sita, J Am Chem Soc 2002, 124, 5932.
| Crossref | GoogleScholarGoogle Scholar | 12022813PubMed |
[30] R Duchateau, A Meetsma, JH Teuben, Chem Commun 1996, 223.
| Crossref | GoogleScholarGoogle Scholar |
[31] ML Cole, C Jones, PC Junk, M Kloth, A Stasch, Chem Eur J 2005, 11, 4482.
| Crossref | GoogleScholarGoogle Scholar | 15892146PubMed |
[32] MP Coles, DC Swenson, RF Jordan, VG Young, Organometallics 1997, 16, 5183.
| Crossref | GoogleScholarGoogle Scholar |
[33] AL Brazeau, GA DiLabio, KA Kreisel, W Monillas, GPA Yap, ST Barry, Dalton Trans 2007, 3297.
| Crossref | GoogleScholarGoogle Scholar | 17893776PubMed |
[34] AP Kenney, GPA Yap, DS Richeson, ST Barry, Inorg Chem 2005, 44, 2926.
| Crossref | GoogleScholarGoogle Scholar | 15819580PubMed |
[35] SJ Bonyhady, D Collis, G Frenking, N Holzmann, C Jones, A Stasch, Nat Chem 2010, 2, 865.
| Crossref | GoogleScholarGoogle Scholar | 20861903PubMed |
[36] J Barker, NC Blacker, PR Phillips, NW Alcock, W Errington, MGH Wallbridge, J Chem Soc, Dalton Trans 1996, 431.
| Crossref | GoogleScholarGoogle Scholar |
[37] (a) B Lyhs, S Schulz, U Westphal, D Bläser, R Boese, M Bolte, Eur J Inorg Chem 2009, 2247.
| Crossref | GoogleScholarGoogle Scholar |
(b) B Lyhs, D Bläser, C Wölper, S Schulz, Chem Eur J 2011, 17, 4914.
| Crossref | GoogleScholarGoogle Scholar |
[38] Z Jiang, LV Interrante, D Kwon, FS Tham, R Kullnig, Inorg Chem 1992, 31, 4815.
| Crossref | GoogleScholarGoogle Scholar |
[39] Z Jiang, LV Interrante, Chem Mater 1990, 2, 439.
| Crossref | GoogleScholarGoogle Scholar |
[40] FC Sauls, LV Interrante, Coord Chem Rev 1993, 128, 193.
| Crossref | GoogleScholarGoogle Scholar |
[41] KM Waggoner, PP Power, J Am Chem Soc 1991, 113, 3385.
| Crossref | GoogleScholarGoogle Scholar |
[42] MM Olmstead, WJ Grigsby, DR Chacon, T Hascall, PP Power, Inorg Chim Acta 1996, 251, 273.
| Crossref | GoogleScholarGoogle Scholar |
[43] G Anantharaman, V Chandrasekhar, MG Walawalkar, HW Roesky, D Vidovic, J Magull, M Noltemeyer, Dalton Trans 2004, 1271.
| Crossref | GoogleScholarGoogle Scholar | 15252672PubMed |
[44] S Jana, R Fröhlich, W Mitzel Norbert, Chem Eur J 2005, 12, 592.
| Crossref | GoogleScholarGoogle Scholar | 16267868PubMed |
[45] RM Roberts, J Org Chem 1949, 14, 277.
| Crossref | GoogleScholarGoogle Scholar | 18117729PubMed |
[46] KM Kuhn, RH Grubbs, Org Lett 2008, 10, 2075.
| Crossref | GoogleScholarGoogle Scholar | 18412354PubMed |
[47] TM McPhillips, SE McPhillips, HJ Chiu, AE Cohen, AM Deacon, PJ Ellis, E Garman, A Gonzalez, NK Sauter, RP Phizackerley, SM Soltis, P Kuhn, J Synchrotron Radiat 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |
[48] GM Sheldrick, Acta Crystallogr 2015, C71, 3.
[49] LJ Barbour, J Supramol Chem 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar |
[50] LJ Cowieson, D Aragoa, M Clift, DJ Ericsson, C Gee, SJ Harrop, J Synchrotron Radiat 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar |