Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Study on the Influence of Different Ether Bonds on PAI Materials Properties

Haiyang Yang https://orcid.org/0000-0002-9548-9181 A B , Duxin Li A C , Jun Yang B C , Jin Wang B , Shunchang Gan B , Yufeng Liu B and Kaikai Cao B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.

B Zhuzhou Times New Material Technology Co. Ltd, Zhuzhou 412007, China.

C Corresponding authors. Email: liduxin6404@csu.edu.cn; Yangjun20012021@163.com

Australian Journal of Chemistry 74(9) 632-639 https://doi.org/10.1071/CH21106
Submitted: 10 May 2021  Accepted: 15 June 2021   Published: 6 July 2021

Abstract

In this paper, diamine monomers with ether bonds in the main chain are selected for molecular structure design, and four polyamide-imide (PAI) materials are prepared by the acyl chloride method. A diamine monomer containing an ether group can reduce the friction coefficient and improve the wear performance of PAI material. The wear mechanism of PAI material can also change due to ether linkages. PAI synthesized using m-phenylenediamine without an ether bond has the highest friction coefficient and abrasion loss, and the wear mechanism is mainly adhesive wear. With the increase of the number of ether bonds in the diamine monomer structure, the friction coefficient of the material decreases from 0.5445 to 0.4216 (22.57 %). The abrasion loss of the PAI material synthesized using 4,4′-diaminodiphenyl ether is the smallest, which is 84.4 % lower than m-phenylenediamine. The wear mechanism is abrasive wear and slight adhesion wear. With the increase of the number of ether bonds, the heat resistance of PAI decreases slightly, while the hydrophobic property increases and the water absorption decreases. To summarise, PAI material synthesized using 4,4′-diaminodiphenyl ether has a low friction coefficient, the best wear resistance, the highest tensile strength and elongation at break, and the best comprehensive properties of the materials reported here.

Keywords: polyamide-imide (PAI), ether linkage, wear-resistant, 1,2,4-trimellitic anhydride acyl chloride, m-phenylenediamine (MPD), 4,4′-diaminodiphenyl ether (ODA), 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene.


References

[1]  R. A. Dine-Hart, W. W. Wright, J. Appl. Polym. Sci. 1967, 11, 609.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. L. Fusaro, ASLE Trans. 1982, 25, 465.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Kitoh, Y. Honda, Thin Solid Films 1995, 271, 92.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Harrass, K. Friedrich, A. A. Almajid, Tribol. Int. 2010, 43, 635.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  W. Brostow, T. Sterzynski, S. Triouleyre, Polymer 1996, 37, 1561.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Takizawa, J. Wakita, M. Kakiage, et al. Macromolecules 2010, 43, 2115.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Z. Li, K. Kou, J. Zhang, et al. J. Mater. Sci. Mater. Electron. 2017, 28, 6079.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. M. Dutczak, F. P. Cuperus, M. Wessling, et al. Separ. Purif. Tech. 2013, 102, 142.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. W. Chen, K. S. Ho, J. Polym. Sci. A Polym. Chem. 1997, 35, 1711.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Jonquières, A. Vicherat, P. Lochon, J. Polym. Sci. A Polym. Chem. 1999, 37, 2873.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Barikani, S. M. Ataei, J. Polym. Sci. A Polym. Chem. 1999, 37, 2245.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. H. Hsiao, C. P. Yang, C. W. Chen, et al. Eur. Polym. J. 2005, 41, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. Shockravi, E. Abouzari-Lotf, A. Javadi, et al. Eur. Polym. J. 2009, 45, 1599.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. J. Liaw, P. N. Hsu, W. H. Chen, et al. Macromolecules 2002, 35, 4669.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Z. Hu, S. Li, C. Zhang, J. Appl. Polym. Sci. 2007, 106, 2494.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. P. Yang, C. S. Wei, Polymer 2001, 42, 1837.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Mallakpour, F. Zeraatpisheh, Des. Monomers Polym. 2013, 16, 313.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. Abdolmaleki, S. Mallakpour, M. Rostami, Prog. Org. Coat. 2015, 80, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Faghihi, M. Hajibeygi, M. Shabanian, J. Polym. Res. 2010, 17, 379.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  H. Moghanian, S. Ebrahimi, A. Mohamadi, Arab. J. Sci. Eng. 2013, 38, 1721.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. Yoshizawa, C. You-Lung, J. Israelachvili, Wear 1993, 168, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  D. M. Eigler, E. K. Schweizer, Nature 1990, 344, 524.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Y. Andoh, S. Oguchi, R. Kaneko, et al. J. Phys. D Appl. Phys. 1992, 25, A71.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. Li, J. G. Jason, P. S. Honigfort, et al. Polymer 1999, 40, 4987.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Hasegawa, N. Sensui, Y. Shindo, et al. Macromolecules 1999, 32, 387.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. M. Delozier, R. A. Orwoll, J. F. Cahoon, et al. Polymer 2002, 43, 813.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  S. Banerjee, M. K. Madhra, V. Kute, J. Appl. Polym. Sci. 2004, 93, 821.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Dasgupta, S. K. Sen, S. Banerjee, J. Membr. Sci. 2009, 345, 249.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. G. Xu, M. J. Yang, F. L. Bai, Synth. Met. 2003, 137, 1097.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Y. J. Kim, T. E. Glass, G. D. Lyle, et al. Macromolecules 1993, 26, 1344.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. Takekoshi, J. G. Wirth, D. R. Heath, et al. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 3069.

[32]  Y. Imai, J. Polym. Sci. Polym. Lett. Ed. 1970, 8, 555.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  P. Samyn, P. De Baets, G. Schoukens, J. Appl. Polym. Sci. 2010, 116, 1146.

[34]  J. W. Jones, N. S. Eiss, ACS Symp. Ser. 1985, 287, 135.

[35]  M. R. Chitsaz-Zadeh, N. S. Eiss, Wear 1986, 110, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  See pp. 27–51 in: Tribology of Plastic Materials (Ed. Y. Yamaguchi) 1990 (Elsevier: Amsterdam).

[37]  P. Samyn, G. Schoukens, F. Verpoort, et al. Macromol. Mater. Eng. 2007, 292, 523.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  C. Kang, N. S. Eiss, Wear 1992, 158, 29.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  H. Y. Erbil, Contact Angle of Liquid Drops on Solids 2009 (Blackwell Publishing Ltd)