The Impact of Water on the Lateral Nanostructure of a Deep Eutectic Solvent–Solid Interface
Aaron Elbourne A F G , Quinn A. Besford B F , Nastaran Meftahi C , Russell J. Crawford A , Torben Daeneke D , Tamar L. Greaves A , Christopher F. McConville A E , Gary Bryant A , Saffron J. Bryant A G and Andrew J. Christofferson A GA School of Science, RMIT University, Melbourne, Vic. 3000, Australia.
B Leibniz Institute for Polymer Research, Dresden 01069, Germany.
C ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic. 3001, Australia.
D School of Engineering, RMIT University, Melbourne, Vic. 3000, Australia.
E Institute for Frontier Materials, Deakin University, Geelong, Vic. 3216, Australia.
F Co-first authors.
G Corresponding authors. Email: aaron.elbourne@rmit.edu.au; saffron.bryant@rmit.edu.au; andrew.christofferson@rmit.edu.au
Dr Aaron Elbourne is a post-doctoral research fellow within the School of Science at RMIT University. He currently holds a Jack Brockhoff Foundation Early Career Medical Research Fellowship and is a leader within RMIT’s ECR network. He obtained his Ph.D. in chemistry in 2017 from The University of Newcastle, Australia, under the supervision of Professor Erica J. Wanless. He began his post-doctoral fellowship in February of 2017. His early research focused on molecular-resolution atomic force microscopy (AFM) imaging, with an emphasis on fundamental ion adsorption at the solid-liquid interface. His current research has ‘shifted gears’ to focus on anti-microbial surface and particle technologies and bio-interfacial studies. He has a passion for research with real-world applications and for industrial translation. More broadly, he is interested in developing next-generation vaccine technologies, antimicrobial technologies, anti-cancer antibodies, and new methods for combating antibiotic resistance. |
Dr Saffron Bryant is a research fellow at RMIT University where she is investigating novel methods of cryopreservation. Saffron has experience in a variety of scientific disciplines, having gained her bachelor’s degree in biomedical science, her Ph.D. in chemistry, and currently working in a physics department. She completed her Ph.D. in 2017 under the supervision of Professor Gregory Warr where she examined amphiphile self-assembly in ionic liquids and deep eutectic solvents. She is especially interested in applying her experience with neoteric solvents to health-related and real-world problems. |
Dr Andrew Christofferson received a bachelor’s degree in chemistry from Montana State University, USA, and a Ph.D. in chemistry with a focus on computational chemistry from the University of Birmingham, UK. During his Ph.D. studies, he determined the reaction mechanism for the reduction of the chemotherapy prodrug CB1954 by the enzyme NfsB. His post-doctoral work at the National Institute of Biological Sciences, China, resulted in new models for selenium-modified DNA, and an explanation for the experimentally observed differences in DNA melting points with various modified base pairings. He also received a grant from the National Natural Science Foundation of China for design and applications of a reactive force field for ambient-temperature proton transfer reactions. In his current position as a research fellow at RMIT University, he uses molecular dynamics simulations and quantum chemical calculations along with experimental X-ray diffraction data to determine atomistic models of self-assembled materials, polymers, biomaterial interactions, liquid metals, ionic liquids, and deep eutectic solvents. |
Australian Journal of Chemistry 75(2) 111-125 https://doi.org/10.1071/CH21078
Submitted: 25 March 2021 Accepted: 5 June 2021 Published: 6 July 2021
Abstract
Deep eutectic solvents (DESs) are tuneable solvents with attractive properties for numerous applications. Their structure–property relationships are still under investigation, especially at the solid–liquid interface. Moreover, the influence of water on interfacial nanostructure must be understood for process optimization. Here, we employ a combination of atomic force microscopy and molecular dynamics simulations to determine the lateral and surface-normal nanostructure of the DES choline chloride:glycerol at the mica interface with different concentrations of water. For the neat DES system, the lateral nanostructure is driven by polar interactions. The surface adsorbed layer forms a distinct rhomboidal symmetry, with a repeat spacing of ~0.9 nm, comprising all DES species. The adsorbed nanostructure remains largely unchanged in 75 mol-% DES compared with pure DES, but at 50 mol-%, the structure is broken and there is a compromise between the native DES and pure water structure. By 25 mol-% DES, the water species dominates the adsorbed liquid layer, leaving very few DES species aggregates at the interface. In contrast, the near-surface surface-normal nanostructure, over a depth of ~3 nm from the surface, remains relatively unchanged down to 25 mol-% DES where the liquid arrangement changed. These results demonstrate not only the significant influence that water has on liquid nanostructure, but also show that there is an asymmetric effect whereby water disrupts the nanostructure to a greater degree closer to the surface. This work provides insight into the complex interactions between DES and water and may enhance their optimization for surface-based applications.
Keywords: atomic force microscopy, molecular dynamics simulations, interfacial nanostructure, deep eutectic solvents, lateral nanostructure, mica, HOPG.
References
[1] (a) Q. Wen, J.-X. Chen, Y.-L. Tang, J. Wang, Z. Yang, Chemosphere 2015, 132, 63.| Crossref | GoogleScholarGoogle Scholar | 25800513PubMed |
(b) K. Radošević, M. Cvjetko Bubalo, V. Gaurina Srček, D. Grgas, T. Landeka Dragičević, I. Radojčić Redovniković, Ecotoxicol. Environ. Saf. 2015, 112, 46.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Y.-L. Chen, X. Zhang, T.-T. You, F. Xu, Cellulose 2019, 26, 205.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Chen, T. Mu, Green Energy Environ. 2019, 4, 95.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 2014, 114, 11060.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q. Zhang, K. de Oliveira Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 2012, 41, 7108.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. A. Coutinho, S. P. Pinho, Fluid Phase Equilib. 2017, 448, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 2003, 70.
| Crossref | GoogleScholarGoogle Scholar |
[4] G. García, S. Aparicio, R. Ullah, M. Atilhan, Energy Fuels 2015, 29, 2616.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) S. J. Bryant, R. Atkin, M. Gradzielski, G. G. Warr, J. Phys. Chem. Lett. 2020, 11, 5926.
| Crossref | GoogleScholarGoogle Scholar | 32628489PubMed |
(b) S. J. Bryant, K. Wood, R. Atkin, G. G. Warr, Soft Matter 2017, 13, 1364.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. Elbourne, N. Meftahi, T. L. Greaves, C. F. McConville, G. Bryant, S. J. Bryant, et al. J. Colloid Interface Sci. 2021, 591, 38.
| Crossref | GoogleScholarGoogle Scholar | 33592524PubMed |
[7] (a) S. McDonald, T. Murphy, S. Imberti, G. G. Warr, R. Atkin, J. Phys. Chem. Lett. 2018, 9, 3922.
| Crossref | GoogleScholarGoogle Scholar | 29961321PubMed |
(b) R. Stefanovic, M. Ludwig, G. B. Webber, R. Atkin, A. J. Page, Phys. Chem. Chem. Phys. 2017, 19, 3297.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. S. Hammond, D. T. Bowron, K. J. Edler, Green Chem. 2016, 18, 2736.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) O. S. Hammond, H. Li, C. Westermann, A. Y. M. Al-Murshedi, F. Endres, A. P. Abbott, et al. Nanoscale Horiz. 2019, 4, 158.
| Crossref | GoogleScholarGoogle Scholar | 32254151PubMed |
(b) J. A. Hammons, F. Zhang, J. Ilavsky, J. Colloid Interface Sci. 2018, 520, 81.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) O. S. Hammond, D. T. Bowron, K. J. Edler, Angew. Chem. Int. Ed. 2017, 56, 9782.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Faraone, D. V. Wagle, G. A. Baker, E. C. Novak, M. Ohl, D. Reuter, et al. J. Phys. Chem. B 2018, 122, 1261.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) P. Kumari, Shobhna, S. Kaur, H. K. Kashyap, ACS Omega 2018, 3, 15246.
| Crossref | GoogleScholarGoogle Scholar | 31458186PubMed |
(b) S. Kaur, S. Sharma, H. K. Kashyap, J. Chem. Phys. 2017, 147, 194507.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. H. Turner, J. D. Holbrey, Phys. Chem. Chem. Phys. 2019, 21, 21782.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) N. López-Salas, J. M. Vicent-Luna, S. Imberti, E. Posada, M. J. Roldán, J. A. Anta, et al. ACS Sustain. Chem.& Eng. 2019, 7, 17565.
| Crossref | GoogleScholarGoogle Scholar |
(b) N. López-Salas, J. M. Vicent-Luna, E. Posada, S. Imberti, R. M. Madero-Castro, S. Calero, et al. ACS Sustain. Chem.& Eng. 2020, 8, 12120.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) Z. Chen, B. McLean, M. Ludwig, R. Stefanovic, G. G. Warr, G. B. Webber, et al. J. Phys. Chem. C 2016, 120, 2225.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. E. Hallett, H. J. Hayler, S. Perkin, Phys. Chem. Chem. Phys. 2020, 22, 20253.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) M. Atilhan, L. T. Costa, S. Aparicio, Langmuir 2017, 33, 5154.
| Crossref | GoogleScholarGoogle Scholar | 28485942PubMed |
(b) M. H. Mamme, S. L. C. Moors, H. Terryn, J. Deconinck, J. Ustarroz, F. De Proft, J. Phys. Chem. Lett. 2018, 9, 6296.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A. Elbourne, S. Cronshaw, K. Voitchovsky, G. G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 2015, 17, 26621.
| Crossref | GoogleScholarGoogle Scholar | 26388145PubMed |
(b) S. McDonald, A. Elbourne, G. G. Warr, R. Atkin, Nanoscale 2016, 8, 906.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Elbourne, B. McLean, K. Voïtchovsky, G. G. Warr, R. Atkin, J. Phys. Chem. Lett. 2016, 7, 3118.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) T. T. A. Dinh, T. T. K. Huynh, L. T. M. Le, T. T. T. Truong, O. H. Nguyen, K. T. T. Tran, et al. ACS Omega 2020, 5, 23843.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Millia, V. Dall’Asta, C. Ferrara, V. Berbenni, E. Quartarone, F. M. Perna, et al. Solid State Ion. 2018, 323, 44.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) M. Hayyan, Y. P. Mbous, C. Y. Looi, W. F. Wong, A. Hayyan, Z. Salleh, et al. Springerplus 2016, 5, 913.
| Crossref | GoogleScholarGoogle Scholar | 27386357PubMed |
(b) I. P. E. Macário, H. Oliveira, A. C. Menezes, S. P. M. Ventura, J. L. Pereira, A. M. M. Gonçalves, et al. Sci. Rep. 2019, 9, 3932.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) J. Lu, X.-T. Li, E.-Q. Ma, L.-P. Mo, Z.-H. Zhang, ChemCatChem 2014, 6, 2854.
| Crossref | GoogleScholarGoogle Scholar |
(b) H.-C. Hu, Y.-H. Liu, B.-L. Li, Z.-S. Cui, Z.-H. Zhang, RSC Adv. 2015, 5, 7720.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Liu, Z. Xue, X. Zhao, H. Mou, J. He, T. Mu, Chem. Commun. 2018, 6140.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. García‐Álvarez, Eur. J. Inorg. Chem. 2015, 5147.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) A. P. Abbott, K. E. Ttaib, G. Frisch, K. S. Ryder, D. Weston, Phys. Chem. Chem. Phys. 2012, 14, 2443.
| Crossref | GoogleScholarGoogle Scholar | 22249451PubMed |
(b) Y. H. You, C. D. Gu, X. L. Wang, J. P. Tu, Surf. Coat. Tech. 2012, 206, 3632.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Gómez, P. Cojocaru, L. Magagnin, E. Valles, J. Electroanal. Chem. 2011, 658, 18.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. A. Sirviö, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 755.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) G. R. T. Jenkin, A. Z. M. Al-Bassam, R. C. Harris, A. P. Abbott, D. J. Smith, D. A. Holwell, et al. Miner. Eng. 2016, 87, 18.
| Crossref | GoogleScholarGoogle Scholar |
(b) Q. Liu, X. Zhao, D. Yu, H. Yu, Y. Zhang, Z. Xue, et al. Green Chem. 2019, 21, 5291.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) R. García, in Amplitude Modulation Atomic Force Microscopy (Ed. R. Garcia) 2010, pp. 77–90 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
(b) K. Voitchovsky, Phys. Rev. E 2013, 88, 022407.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Page, A. Elbourne, R. Stefanovic, M. A. Addicoat, G. G. Warr, K. Voïtchovsky, et al. Nanoscale 2014, 6, 8100.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, R. Atkin, ACS Nano 2015, 9, 7608.
| Crossref | GoogleScholarGoogle Scholar |
[22] D Nečas, P Klapetek, Open Phys. 2012, 10, 181.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) J. Lee, X. Cheng, J. M. Swails, M. S. Yeom, P. K. Eastman, J. A. Lemkul, et al. J. Chem. Theory Comput. 2016, 12, 405.
| Crossref | GoogleScholarGoogle Scholar | 26631602PubMed |
(b) S. Jo, T. Kim, V. G. Iyer, W. Im, J. Comput. Chem. 2008, 29, 1859.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 2009, 30, 2157.
| Crossref | GoogleScholarGoogle Scholar | 19229944PubMed |
[25] H. Heinz, T.-J. Lin, R. Kishore Mishra, F. S. Emami, Langmuir 2013, 29, 1754.
| Crossref | GoogleScholarGoogle Scholar | 23276161PubMed |
[26] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, et al. J. Comput. Chem. 2010, 31, 671.
| 19575467PubMed |
[27] (a) K. Vanommeslaeghe, A. D. MacKerell, J. Chem. Inf. Model. 2012, 52, 3144.
| Crossref | GoogleScholarGoogle Scholar | 23146088PubMed |
(b) K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell, J. Chem. Inf. Model. 2012, 52, 3155.
| Crossref | GoogleScholarGoogle Scholar |
[28] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
| Crossref | GoogleScholarGoogle Scholar | 8744570PubMed |
[29] K. Axel, TopoTools: Release 1.6 with CHARMM Export in Topogromacs 2016 (OpenAIRE).
[30] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, et al. SoftwareX 2015, 1–2, 19.
| Crossref | GoogleScholarGoogle Scholar |
[31] T. Giorgino, Comput. Phys. Commun. 2014, 185, 317.
| Crossref | GoogleScholarGoogle Scholar |
[32] (a) M. Ricci, W. Trewby, C. Cafolla, K. Voïtchovsky, Sci. Rep. 2017, 7, 43234.
| Crossref | GoogleScholarGoogle Scholar | 28230209PubMed |
(b) M. Ricci, R. A. Quinlan, K. Voitchovsky, Soft Matter 2017, 13, 187.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Hofmann, K. Voïtchovsky, P. Spijker, M. Schmidt, T. Stumpf, Sci. Rep. 2016, 6, 21576.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Trewby, D. Livesey, K. Voitchovsky, Soft Matter 2016, 12, 2642.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Ricci, P. Spijker, K. Voïtchovsky, Nat. Commun. 2014, 5, 4400.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. J. Miller, W. Trewby, A. F. Payam, L. Piantanida, C. Cafolla, K. Voïtchovsky, J. Vis. Exp. 2016, 118, e54924.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) J. J. Segura, A. Elbourne, E. J. Wanless, G. G. Warr, K. Voitchovsky, R. Atkin, Phys. Chem. Chem. Phys. 2013, 15, 3320.
| Crossref | GoogleScholarGoogle Scholar | 23361257PubMed |
(b) A. Elbourne, J. Sweeney, G. B. Webber, E. J. Wanless, G. G. Warr, M. W. Rutland, et al. Chem. Commun. 2013, 6797.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Elbourne, K. Voitchovsky, G. G. Warr, R. Atkin, Chem. Sci. 2015, 6, 527.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Elbourne, S. McDonald, K. Voïchovsky, F. Endres, G. G. Warr, R. Atkin, ACS Nano 2015, 9, 7608.
| Crossref | GoogleScholarGoogle Scholar |
[34] (a) A. Elbourne, M. F. Dupont, S. Collett, V. K. Truong, X. Xu, N. Vrancken, et al. J. Colloid Interface Sci. 2019, 536, 363.
| Crossref | GoogleScholarGoogle Scholar | 30380435PubMed |
(b) W. Trewby, J. Faraudo, K. Voïtchovsky, Nanoscale 2019, 11, 4376.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Collett, J. Torresi, L. Earnest-Silveira, V. Khanh Truong, D. Christiansen, B. M. Tran, et al. J. Colloid Interface Sci. 2021, 592, 371.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. Nishimura, S. Biggs, P. Scales, T. Healy, K. Tsunematsu, T. Tateyama, Langmuir 1994, 10, 4554.
| Crossref | GoogleScholarGoogle Scholar |
[36] S.-H. Loh, S. P. Jarvis, Langmuir 2010, 26, 9176.
| Crossref | GoogleScholarGoogle Scholar | 20486665PubMed |
[37] K. Voitchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, F. Stellacci, Nat. Nanotechnol. 2010, 5, 401.
| Crossref | GoogleScholarGoogle Scholar | 20418866PubMed |
[38] H. Li, T. Carstens, A. Elbourne, N. Borisenko, R. Gustus, F. Endres, et al. in Electrodeposition from Ionic Liquids (Eds F. Endres, A. Abbott, D. MacFarlane) 2017, pp. 321–343 (John Wiley & Sons Inc.: Hoboken, NJ).
[39] A. Elbourne, S. Cheeseman, P. Atkin, N. P. Truong, N. Syed, A. Zavabeti, et al. ACS Nano 2020, 14, 802.
| Crossref | GoogleScholarGoogle Scholar | 31922722PubMed |
[40] Z. Chen, M. Ludwig, G. G. Warr, R. Atkin, J. Colloid Interface Sci. 2017, 494, 373.
| Crossref | GoogleScholarGoogle Scholar | 28167425PubMed |
[41] R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
| Crossref | GoogleScholarGoogle Scholar | 26028184PubMed |
[42] M. Ricci, P. Spijker, F. Stellacci, J.-F. Molinari, K. Voïtchovsky, Langmuir 2013, 29, 2207.
| Crossref | GoogleScholarGoogle Scholar | 23339738PubMed |
[43] (a) Q. A. Besford, M. Liu, A. J. Christofferson, J. Phys. Chem. B 2018, 122, 8309.
| Crossref | GoogleScholarGoogle Scholar | 30132324PubMed |
(b) Q. A. Besford, A. J. Christofferson, M. Liu, I. Yarovsky, J. Chem. Phys. 2017, 147, 194503.
| Crossref | GoogleScholarGoogle Scholar |
[44] Q. A. Besford, A. J. Christofferson, J. Kalayan, J.-U. Sommer, R. H. Henchman, J. Phys. Chem. B 2020, 124, 6369.
| Crossref | GoogleScholarGoogle Scholar | 32589426PubMed |
[45] M. Liu, Q. A. Besford, T. Mulvaney, A. Gray-Weale, J. Chem. Phys. 2015, 142, 114117.
| Crossref | GoogleScholarGoogle Scholar | 25796241PubMed |
[46] R. G. Pereyra, A. J. Bermúdez di Lorenzo, D. C. Malaspina, M. A. Carignano, Chem. Phys. Lett. 2012, 538, 35.
| Crossref | GoogleScholarGoogle Scholar |
[47] (a) S. Perkin, T. Albrecht, J. Klein, Phys. Chem. Chem. Phys. 2010, 12, 1243.
| Crossref | GoogleScholarGoogle Scholar | 20119601PubMed |
(b) S. Perkin, L. Crowhurst, H. Niedermeyer, T. Welton, A. M. Smith, N. N. Gosvami, Chem. Commun. 2011, 6572.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Perkin, Phys. Chem. Chem. Phys. 2012, 14, 5052.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. M. Smith, K. R. J. Lovelock, S. Perkin, Faraday Discuss. 2013, 167, 279.
| Crossref | GoogleScholarGoogle Scholar |
[48] (a) F. Buchner, K. Forster-Tonigold, M. Bozorgchenani, A. Gross, R. J. Behm, J. Phys. Chem. Lett. 2016, 7, 226.
| Crossref | GoogleScholarGoogle Scholar | 26713562PubMed |
(b) B. Uhl, M. Hekmatfar, F. Buchner, R. J. Behm, Phys. Chem. Chem. Phys. 2016, 18, 6618.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Uhl, H. Huang, D. Alwast, F. Buchner, R. J. Behm, Phys. Chem. Chem. Phys. 2015, 17, 23816.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Uhl, F. Buchner, S. Gabler, M. Bozorgchenani, R. Jurgen Behm, Chem. Commun. 2014, 8601.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Buchner, K. Forster-Tonigold, B. Uhl, D. Alwast, N. Wagner, H. Farkhondeh, et al. ACS Nano 2013, 7, 7773.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. Uhl, T. Cremer, M. Roos, F. Maier, H.-P. Steinruck, R. J. Behm, Phys. Chem. Chem. Phys. 2013, 15, 17295.
| Crossref | GoogleScholarGoogle Scholar |
(g) B. Uhl, F. Buchner, D. Alwast, N. Wagner, R. J. Behm, Beilstein J. Nanotechnol. 2013, 4, 903.
| Crossref | GoogleScholarGoogle Scholar |
(h) T. Waldmann, H.-H. Huang, H. E. Hoster, O. Höfft, F. Endres, R. J. Behm, ChemPhysChem 2011, 12, 2565.
| Crossref | GoogleScholarGoogle Scholar |
(i) S. Baldelli, J. Phys. Chem. Lett. 2013, 4, 244.
| Crossref | GoogleScholarGoogle Scholar |
(j) C. Romero, S. Baldelli, J. Phys. Chem. B 2006, 110, 6213.
| Crossref | GoogleScholarGoogle Scholar |
(k) S. Baldelli, J. Phys. Chem. B 2005, 109, 13049.
| Crossref | GoogleScholarGoogle Scholar |