Crystal Engineering of Sterically Shielded Hexa-peri-hexabenzocoronenes*
David Reger A , Frank Hampel A and Norbert Jux A BA Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91052 Erlangen, Germany.
B Corresponding author. Email: norbert.jux@fau.de
Australian Journal of Chemistry 74(7) 564-567 https://doi.org/10.1071/CH21025
Submitted: 20 January 2021 Accepted: 29 March 2021 Published: 6 May 2021
Abstract
The crystal structures of four pentakis-tert-butyl hexa-peri-hexabenzocoronenes (HBCs), each with an additional sixth substituent namely iodide, methoxy, formyl, and nitro, are presented. We show that the additional substituent has a significant impact on the packing in the solid state and the data obtained can be utilised for crystal engineering. By introducing an electron accepting substituent it was possible to achieve columnar arrangements that were previously unknown for such highly tert-butylated HBCs. In this way we provide insight into the aggregation behaviour of nanographenes with sterically highly shielded edges.
Keywords: nanographenes, hexa-peri-hexabenzocoronenes, polycyclic aromatic hydrocarbons, X-ray structures, crystal engineering, solid-state aggregation, organic materials, π-interactions, electronic effects.
References
[1] (a) C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.| Crossref | GoogleScholarGoogle Scholar | 22111507PubMed |
(b) H. Seyler, B. Purushothaman, D. J. Jones, A. B. Holmes, W. W. H. Wong, Pure Appl. Chem. 2012, 84, 1047.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. USA 2002, 99, 5804.
| Crossref | GoogleScholarGoogle Scholar | 11972059PubMed |
(b) J. E. Anthony, Nat. Mater. 2014, 13, 773.
| Crossref | GoogleScholarGoogle Scholar |
[3] G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952.
| Crossref | GoogleScholarGoogle Scholar | 23750552PubMed |
[4] (a) J. M. Robertson, J. Trotter, J. Chem. Soc. 1961, 1280.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Goddard, M. W. Haenel, W. C. Herndon, C. Krueger, M. Zander, J. Am. Chem. Soc. 1995, 117, 30.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) P. Herwig, C. W. Kayser, K. Müllen, H. W. Spiess, Adv. Mater. 1996, 8, 510.
| Crossref | GoogleScholarGoogle Scholar |
(b) C.-Y. Liu, A. Fechtenkötter, M. D. Watson, K. Müllen, A. J. Bard, Chem. Mater. 2003, 15, 124.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. M. van de Craats, J. M. Warman, A. Fechtenkötter, J. D. Brand, M. A. Harbison, K. Müllen, Adv. Mater. 1999, 11, 1469.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, Science 2001, 293, 1119.
| Crossref | GoogleScholarGoogle Scholar | 11498585PubMed |
[8] (a) P. T. Herwig, V. Enkelmann, O. Schmelz, K. Müllen, Chem. – Eur. J. 2000, 6, 1834.
| Crossref | GoogleScholarGoogle Scholar | 10845643PubMed |
(b) L. Zhai, R. Shukia, R. Rathore, Org. Lett. 2009, 11, 3474.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. Haines, D. Reger, J. Traeg, V. Strauss, D. Lungerich, D. Zahn, N. Jux, D. M. Guldi, Nanoscale 2021, 13, 801.
| Crossref | GoogleScholarGoogle Scholar | 33410836PubMed |
[10] D. Reger, P. Haines, F. W. Heinemann, D. M. Guldi, F. Hampel, N. Jux, Angew. Chem. Int. Ed. 2018, 57, 5938.
| Crossref | GoogleScholarGoogle Scholar |
[11] F. A. Murphy, S. M. Draper, J. Org. Chem. 2010, 75, 1862.
| Crossref | GoogleScholarGoogle Scholar | 20170105PubMed |
[12] M. Nishio, CrystEngComm 2004, 6, 130.
| Crossref | GoogleScholarGoogle Scholar |