Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Conformers, Properties of the Anticancer Drug Plocabulin, and its Binding Mechanism with p-Glycoprotein: DFT and MD Studies

Xudong Lü A , Yufei Ma A , Yulian Tao A , Fei Yan A , Ce Song B C , Cuihong Wang https://orcid.org/0000-0002-9443-5237 D and Meiling Zhang https://orcid.org/0000-0002-8241-747X A E
+ Author Affiliations
- Author Affiliations

A School of Biomedical Engineering and Technology, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.

B Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

C Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden.

D School of Science, Tianjin Chengjian University, 26 Jinjing Road, Tianjin 300384, China.

E Corresponding author. Email: mlzhang@tmu.edu.cn

Australian Journal of Chemistry 74(7) 529-539 https://doi.org/10.1071/CH20320
Submitted: 23 October 2020  Accepted: 29 January 2021   Published: 8 March 2021

Abstract

Plocabulin (PM060184) is a promising new anticancer drug as a microtubule inhibitor. The conformational structure and properties of plocabulin have been studied theoretically. The initial structure was screened by the B3LYP/3-21G* method, and then 32 unique conformations were further optimised with the B3LYP/6-311G* method. The single-point energies were determined at the M06-L/6-311G(2df,p) level. The UV excitation of the most stable plocabulin conformation in methanol was studied by the TD-CAM-B3LYP/6-311G(2df,p) method. High-quality human p-glycoprotein model was obtained through homology modelling. The binding interaction between p-glycoprotein and plocabulin was studied by docking and MD simulation. LEU65, TYR310, ILE340, THR945, PHE983, MET986, and GLN990 were found to be important amino acid residues in the interaction. From a certain perspective, the ‘reverse exclusion’ mechanism of plocabulin with p-glycoprotein was illustrated, and this mechanism provides theoretical guidance for the structural modification of plocabulin and for design of drug’s to avoid p-glycoprotein-mediated drug resistance.


References

[1]  C. Dumontet, M. A. Jordan, Nat. Rev. Drug Discov. 2010, 9, 790.
         | Crossref | GoogleScholarGoogle Scholar | 20885410PubMed |

[2]  M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253.
         | Crossref | GoogleScholarGoogle Scholar | 15057285PubMed |

[3]  C. Calcabrini, E. Catanzaro, A. Bishayee, E. Turrini, C. Fimognari, Mar. Drugs 2017, 15, 310.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. J. Martín, L. Coello, R. Fernández, F. Reyes, A. Rodríguez, C. Murcia, et al. J. Am. Chem. Soc. 2013, 135, 10164.
         | Crossref | GoogleScholarGoogle Scholar | 23750450PubMed |

[5]  B. Pera, I. Barasoain, A. Pantazopoulou, A. Canales, R. Matesanz, J. Rodriguez-Salarichs, et al. ACS Chem. Biol. 2013, 8, 2084.
         | Crossref | GoogleScholarGoogle Scholar | 23859655PubMed |

[6]  M. Martínez-Díez, M. J. Guillén-Navarro, B. Pera, B. P. Bouchet, J. F. Martínez-Leal, I. Barasoain, et al. Biochem. Pharmacol. 2014, 88, 291.
         | Crossref | GoogleScholarGoogle Scholar | 24486569PubMed |

[7]  E. Elez, C. Gomez-Roca, A. Soto Matos-Pita, G. Argiles, T. Valentin, C. Coronado, et al. Invest. New Drugs 2019, 37, 674.
         | Crossref | GoogleScholarGoogle Scholar | 30411218PubMed |

[8]  A. E. Prota, K. Bargsten, J. F. Diaz, M. Marsh, C. Cuevas, M. Liniger, et al. Proc. Natl. Acad. Sci. USA 2014, 111, 13817.
         | Crossref | GoogleScholarGoogle Scholar | 25114240PubMed |

[9]  Y. Wang, A. Wozniak, J. Wellens, Y. K. Gebreyohannes, M. J. Guillén, P. M. Avilés, et al. Transl. Oncol. 2020, 13, 100832.
         | Crossref | GoogleScholarGoogle Scholar | 32898766PubMed |

[10]  K. R. Navarrete, V. A. Jiménez, J. Chem. Inf. Model. 2020, 60, 4076.
         | Crossref | GoogleScholarGoogle Scholar | 32687349PubMed |

[11]  W. T. Bellamy, Annu. Rev. Pharmacol. Toxicol. 1996, 36, 161.
         | Crossref | GoogleScholarGoogle Scholar | 8725386PubMed |

[12]  Q. Cui, J. Q. Wang, Y. G. Assaraf, L. Ren, P. Gupta, L. Wei, et al. Drug Resist. Updates 2018, 41, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. K. Lytle, A. G. Barber, T. Reya, Nat. Rev. Cancer 2018, 18, 669.
         | Crossref | GoogleScholarGoogle Scholar | 30228301PubMed |

[14]  J. S. Lagas, R. A. van Waterschoot, R. W. Sparidans, E. Wagenaar, J. H. Beijnen, A. H. Schinkel, Mol. Cancer Ther. 2010, 9, 319.
         | Crossref | GoogleScholarGoogle Scholar | 20103600PubMed |

[15]  P. D. Eckford, F. J. Sharom, Chem. Rev. 2009, 109, 2989.
         | Crossref | GoogleScholarGoogle Scholar | 19583429PubMed |

[16]  J. Li, K. F. Jaimes, S. G. Aller, Protein Sci. 2014, 23, 34.
         | Crossref | GoogleScholarGoogle Scholar | 24155053PubMed |

[17]  A. B. Ward, P. Szewczyk, V. Grimard, C. W. Lee, L. Martinez, R. Doshi, et al. Proc. Natl. Acad. Sci. USA 2013, 110, 13386.
         | Crossref | GoogleScholarGoogle Scholar | 23901103PubMed |

[18]  M. S. Jin, M. L. Oldham, Q. Zhang, J. Chen, Nature 2012, 490, 566.
         | Crossref | GoogleScholarGoogle Scholar | 23000902PubMed |

[19]  S. G. Aller, J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, et al. Science 2009, 323, 1718.
         | Crossref | GoogleScholarGoogle Scholar | 19325113PubMed |

[20]  E. P. Bruggemann, S. J. Currier, M. M. Gottesman, I. Pastan, J. Biol. Chem. 1992, 267, 21020.
         | Crossref | GoogleScholarGoogle Scholar | 1356986PubMed |

[21]  G. Scambia, F. O. Ranelletti, P. B. Panici, R. De Vincenzo, G. Bonanno, G. Ferrandina, et al. Cancer Chemother. Pharmacol. 1994, 34, 459.
         | Crossref | GoogleScholarGoogle Scholar | 7923555PubMed |

[22]  T. M. Sissung, C. E. Baum, J. Deeken, D. K. Price, J. Aragon-Ching, S. M. Steinberg, et al. Clin. Cancer Res. 2008, 14, 4543.
         | Crossref | GoogleScholarGoogle Scholar | 18628469PubMed |

[23]  R. W. Robey, K. M. Pluchino, M. D. Hall, A. T. Fojo, S. E. Bates, M. M. Gottesman, Nat. Rev. Cancer 2018, 18, 452.
         | Crossref | GoogleScholarGoogle Scholar | 29643473PubMed |

[24]  R. J. Kathawala, Y. J. Wang, S. Shukla, Y. K. Zhang, S. Alqahtani, A. Kaddoumi, et al. Chin. J. Cancer 2015, 34, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Zhang, C. Song, Z. Yao, Q. Ji, Curr. Org. Chem. 2012, 16, 2321.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  C. Sun, L. Zhu, C. Zhang, C. Song, C. Wang, M. Zhang, et al. J. Comput. Chem. 2018, 39, 889.
         | Crossref | GoogleScholarGoogle Scholar | 29330902PubMed |

[27]  L. Zhu, C. Zhang, X. Lü, C. Song, C. Wang, M. Zhang, et al. J. Mol. Model. 2020, 26, 162.
         | Crossref | GoogleScholarGoogle Scholar | 32474655PubMed |

[28]  S. Stepanian, I. Reva, E. Radchenko, L. Adamowicz, J. Phys. Chem. A 1998, 102, 4623.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Schindler, G. Laloy-Borgna, L. Barnes, A. R. Allouche, E. Bouju, V. Dugas, et al. Anal. Chem. 2018, 90, 11741.
         | Crossref | GoogleScholarGoogle Scholar | 30152689PubMed |

[30]  P. A. Nikitina, T. Y. Koldaeva, V. S. Mityanov, V. S. Miroshnikov, E. I. Basanova, V. P. Perevalov, Aust. J. Chem. 2019, 72, 699.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  R. Zamiri, H. A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi, et al. PLoS One 2015, 10, e0122989.
         | Crossref | GoogleScholarGoogle Scholar | 26135304PubMed |

[32]  A. Alam, J. Kowal, E. Broude, I. Roninson, K. P. Locher, Science 2019, 363, 753.
         | Crossref | GoogleScholarGoogle Scholar | 30765569PubMed |

[33]  R. Kumari, R. Kumar, C. Open Source Drug Discovery, A. Lynn, J. Chem. Inf. Model. 2014, 54, 1951.
         | Crossref | GoogleScholarGoogle Scholar | 24850022PubMed |

[34]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[35]  V. S. Bernales, A. V. Marenich, R. Contreras, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2012, 116, 9122.
         | Crossref | GoogleScholarGoogle Scholar | 22734466PubMed |

[36]  E. Seifert, J. Chem. Inf. Model. 2014, 54, 1552.
         | Crossref | GoogleScholarGoogle Scholar | 24702057PubMed |

[37]  Y. Kim, J. Chen, Science 2018, 359, 915.
         | Crossref | GoogleScholarGoogle Scholar | 29371429PubMed |

[38]  A. Alam, R. Küng, J. Kowal, R. A. McLeod, N. Tremp, E. V. Broude, et al. Proc. Natl. Acad. Sci. USA 2018, 115, E1973.
         | Crossref | GoogleScholarGoogle Scholar | 29440498PubMed |

[39]  The UniProt Consortium Nucleic Acids Res. 2018, 46, 2699.
         | Crossref | GoogleScholarGoogle Scholar | 29425356PubMed |

[40]  H. McWilliam, W. Li, M. Uludag, S. Squizzato, Y. M. Park, N. Buso, et al. Nucleic Acids Res. 2013, 41, W597.
         | Crossref | GoogleScholarGoogle Scholar | 23671338PubMed |

[41]  A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, et al. Nucleic Acids Res. 2018, 46, W296.
         | Crossref | GoogleScholarGoogle Scholar | 29788355PubMed |

[42]  T. Schwede, J. Kopp, N. Guex, M. C. Peitsch, Nucleic Acids Res. 2003, 31, 3381.
         | Crossref | GoogleScholarGoogle Scholar | 12824332PubMed |

[43]  N. Guex, M. C. Peitsch, T. Schwede, Electrophoresis 2009, 30, S162.
         | Crossref | GoogleScholarGoogle Scholar | 19517507PubMed |

[44]  A. E. Lohning, S. M. Levonis, B. Williams-Noonan, S. S. Schweiker, Curr. Top. Med. Chem. 2017, 17, 2023.
         | Crossref | GoogleScholarGoogle Scholar | 28137238PubMed |

[45]  Z. Li, F. Zhang, C. Zhang, C. Wang, P. Lu, X. Zhao, et al. Mol. Immunol. 2019, 114, 651.
         | Crossref | GoogleScholarGoogle Scholar | 31557626PubMed |

[46]  P. Rotkiewicz, J. Skolnick, J. Comput. Chem. 2008, 29, 1460.
         | Crossref | GoogleScholarGoogle Scholar | 18196502PubMed |

[47]  R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, J. Appl. Cryst. 1993, 26, 283.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  C. Colovos, T. O. Yeates, Protein Sci. 1993, 2, 1511.
         | Crossref | GoogleScholarGoogle Scholar | 8401235PubMed |

[49]  P. Benkert, M. Künzli, T. Schwede, Nucleic Acids Res. 2009, 37, W510.
         | Crossref | GoogleScholarGoogle Scholar | 19429685PubMed |

[50]  S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, A. J. Olson, Nat. Protoc. 2016, 11, 905.
         | Crossref | GoogleScholarGoogle Scholar | 27077332PubMed |

[51]  M. Kontoyianni, Methods Mol. Biol. 2017, 1647, 255.
         | Crossref | GoogleScholarGoogle Scholar | 28809009PubMed |

[52]  Y. S. Mary, Y. S. Mary, K. S. Resmi, R. Thomas, Heliyon 2019, 5, e02175.
         | Crossref | GoogleScholarGoogle Scholar | 31763480PubMed |

[53]  B. V. Farahani, G. R. Bardajee, F. H. Rajabi, Z. Hooshyar, Aust. J. Chem. 2015, 68, 999.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, et al. J. Comput. Chem. 2009, 30, 2785.
         | Crossref | GoogleScholarGoogle Scholar | 19399780PubMed |

[55]  S. A. Showalter, R. Brüschweiler, J. Chem. Theory Comput. 2007, 3, 961.
         | Crossref | GoogleScholarGoogle Scholar | 26627416PubMed |

[56]  D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. Berendsen, J. Comput. Chem. 2005, 26, 1701.
         | Crossref | GoogleScholarGoogle Scholar | 16211538PubMed |

[57]  K. G. Sprenger, V. W. Jaeger, J. Pfaendtner, J. Phys. Chem. B 2015, 119, 5882.
         | Crossref | GoogleScholarGoogle Scholar | 25853313PubMed |

[58]  G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.
         | Crossref | GoogleScholarGoogle Scholar | 17212484PubMed |

[59]  M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18, 1463.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, J. Chem. Phys. 1995, 103, 8577.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  R. E. Rigsby, A. B. Parker, Biochem. Mol. Biol. Educ. 2016, 44, 433.
         | Crossref | GoogleScholarGoogle Scholar | 27241834PubMed |

[63]  E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, et al. J. Comput. Chem. 2004, 25, 1605.
         | Crossref | GoogleScholarGoogle Scholar | 15264254PubMed |