Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chemical Nature of Spent Coffee Grounds and Husks

Temma Carruthers-Taylor A , Jhumur Banerjee A C , Karen Little A , Yong Foo Wong A B , William Roy Jackson A D and Antonio F. Patti https://orcid.org/0000-0003-2801-751X A E
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.

B School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.

C Indian Institute of Technology, Main Gate Road, IIT Area, Powai, Mumbai, Maharashtra 400076, India.

D Deceased.

E Corresponding author. Email: tony.patti@monash.edu

Australian Journal of Chemistry 73(12) 1284-1291 https://doi.org/10.1071/CH20189
Submitted: 9 June 2020  Accepted: 18 September 2020   Published: 22 October 2020

Abstract

Waste coffee husks and spent coffee grounds (SCGs) are produced in large qualities worldwide. Characterisation of these waste streams from Australian commercial outlets in terms of lipid, caffeine, and polyphenol content was undertaken giving values up to 10 % lipids and 23 mg g−1 phenols from SCGs, consistent with reports from other parts of the world. Husks generally gave lower values. Caffeine residues of 5 and 10 mg g−1 (dry weight basis) were found in husks and SCGs respectively. Comparing air-dried and water-extracted solid SCGs and the resulting water extract in plant phytotoxicity studies indicated that pretreatment of the SCGs and plants exposed to the SCGs, are important factors when considering their use as a soil amendment.


References

[1]  A. Cameron, S. O’Malley, Coffee 4 Planet Ark. Final Report for the City of Sydney. The Council of the City of Sydney, Reference: 2015/199344, January 2016. Available at: https://assets.ctfassets.net/fqjwh0badmlx/7Jb4U4q1tH8awgNl51E31m/44cb75f992f1a414fb468e1dd844a0a9/doc-1793-cos-final-report-2016--5-.pdf [accessed 10 October 2016]

[2]  C. Kourmentza, C. N. Economou, P. Tsafrakidou, M. Kornaros, J. Clean. Prod. 2018, 172, 980.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Peshev, D. Mitev, L. Peeva, G. Peev, Separ. Purif. Tech. 2018, 192, 271.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Kovalcik, S. Obruca, I. Marova, Food Bioprod. Process. 2018, 110, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  X. C. Schmidt Rivera, A. Gallego-Schmid, V. Najdanovic-Visak, A. Azapagic, Resour. Conserv. Recycl. 2020, 157, 104751.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J. Massaya, A. P. Pereira, B. Mills-Lamptey, J. Benjamin, C. J. Chuck, Food Bioprod. Process. 2019, 118, 149.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. F. Ballesteros, J. A. Teixeira, S. I. Mussatto, Food Bioprocess Technol. 2014, 7, 3493.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. I. Mussatto, E. M. Machado, S. Martins, J. A. Teixeira, Food Bioprocess Technol. 2011, 4, 661.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. S. Murthy, M. M. Naidu, Resour. Conserv. Recycling 2012, 66, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Campos-Vega, G. Loarca-Piña, H. Vergara-Castañeda, B. D. Oomah, Trends Food Sci. Technol. 2015, 45, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  B. Ahangari, J. Sargolzaei, J. Food Process. Preserv. 2013, 37, 1014.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. W. Jenkins, N. E. Stageman, C. M. Fortune, C. J. Chuck, Energy Fuels 2014, 28, 1166.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Obruca, S. Petrik, P. Benesova, Z. Svoboda, L. Eremka, I. Marova, Appl. Microbiol. Biotechnol. 2014, 98, 5883.
         | Crossref | GoogleScholarGoogle Scholar | 24652066PubMed |

[14]  M. Stylianou, A. Agapiou, M. Omirou, I. Vyrides, I. M. Ioannides, G. Maratheftis, D. Fasoula, Environ. Sci. Pollut. Res. Int. 2018, 25, 35776.
         | Crossref | GoogleScholarGoogle Scholar | 29860699PubMed |

[15]  S. J. Hardgrove, S. J. Livesley, Urban For. Urban Green. 2016, 18, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Ramalakshmi, L. J. M. Rao, Y. Takano-Ishikawa, M. Goto, Food Chem. 2009, 115, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  P. Mohanpuria, S. Yadav, Photosynthetica 2009, 47, 293.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. R. Batish, H. P. Singh, M. Kaur, R. K. Kohli, S. S. Yadav, Acta Physiol. Plant. 2008, 30, 401.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. E. Rayment, D. J. Lyons, Soil Chemical Methods 2011 (CSIRO Publishing: Melbourne).

[20]  K. M. Miranda, M. G. Espey, D. A. Wink, Nitric Oxide 2001, 5, 62.
         | Crossref | GoogleScholarGoogle Scholar | 11178938PubMed |

[21]  L. P. Canellas, A. Piccolo, L. B. Dobbss, R. Spaccini, F. L. Olivares, D. B. Zandonadi, A. R. Façanha, Chemosphere 2010, 78, 457.
         | Crossref | GoogleScholarGoogle Scholar | 19910019PubMed |

[22]  A. Zuorro, R. Lavecchia, J. Clean. Prod. 2012, 34, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. I. Mussatto, L. F. Ballesteros, S. Martins, J. A. Teixeira, Separ. Purif. Tech. 2011, 83, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. N. Clifford, K. L. Johnston, S. Knight, N. Kuhnert, J. Agric. Food Chem. 2003, 51, 2900.
         | Crossref | GoogleScholarGoogle Scholar | 12720369PubMed |

[25]  E. A. Ainsworth, K. M. Gillespie, Nat. Protoc. 2007, 2, 875.
         | Crossref | GoogleScholarGoogle Scholar | 17446889PubMed |

[26]  A. Cervera-Mata, M. Navarro-Alarcón, J. Á. Rufián-Henares, S. Pastoriza, J. Montilla-Gómez, G. Delgado, Sci. Total Environ. 2020, 717, 137247.
         | Crossref | GoogleScholarGoogle Scholar | 32092806PubMed |

[27]  K. P. M. Mosse, A. F. Patti, E. W. Christen, T. R. Cavagnaro, J. Hazard. Mater. 2010, 180, 63.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  W. C. Wang, Environ. Toxicol. Chem. 1986, 5, 891.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  R. Gerson, S. Honma, Euphytica 1978, 27, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. Fenoll, I. Garrido, P. Hellín, P. Flores, N. Vela, S. Navarro, Environ. Sci. Pollut. Res. Int. 2015, 22, 4336.
         | 25296939PubMed |

[31]  R. Kasongo, A. Verdoodt, P. Kanyankagote, G. Baert, E. V. Ranst, Soil Use Manage. 2011, 27, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  I. Kögel-Knabner, Soil Biol. Biochem. 2002, 34, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Fuel 2012, 96, 70.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  K. S. Andrade, R. T. Gonçalvez, M. Maraschin, R. M. Ribeiro-do-Valle, J. Martínez, S. R. Ferreira, Talanta 2012, 88, 544.
         | Crossref | GoogleScholarGoogle Scholar | 22265539PubMed |

[35]  M. V. P. Rocha, L. J. B. L. de Matos, L. P. de Lima, P. M. da Silva Figueiredo, I. L. Lucena, F. A. N. Fernandes, L. R. B. Gonçalves, Bioresour. Technol. 2014, 167, 343.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  H. M. Barbosa, M. M. de Melo, M. A. Coimbra, C. P. Passos, C. M. Silva, J. Supercrit. Fluids 2014, 85, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. M. Couto, J. Fernandes, M. G. da Silva, P. C. Simões, J. Supercrit. Fluids 2009, 51, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. P. Simopoulos, Biomed. Pharmacother. 2002, 56, 365.
         | Crossref | GoogleScholarGoogle Scholar | 12442909PubMed |

[39]  P. Esquivel, V. M. Jiménez, Food Res. Int. 2012, 46, 488.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. Panusa, A. Zuorro, R. Lavecchia, G. Marrosu, R. Petrucci, J. Agric. Food Chem. 2013, 61, 4162.
         | Crossref | GoogleScholarGoogle Scholar | 23577588PubMed |

[41]  C. Severini, A. Derossi, A. G. Fiore, Eur. Food Res. Technol. 2017, 243, 835.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  N. A. Al-Dhabi, K. Ponmurugan, P. Maran Jeganathan, Ultrason. Sonochem. 2017, 34, 206.
         | Crossref | GoogleScholarGoogle Scholar | 27773237PubMed |

[43]  A. S. Caballero-Galván, D. L. Restrepo-Serna, M. Ortiz-Sánchez, C. A. Cardona-Alzate, Waste Biomass Valoriz. 2018, 9, 2381.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  F. Acevedo, M. Rubilar, E. Scheuermann, B. Cancino, E. Uquiche, M. Garcés, K. Inostroza, C. Shene, Bioactive Compounds of Spent Coffee Grounds, A Coffee Industrial Residue, in Proceedings of the Symposium on Agricultural and Agroindustrial Waste Management (III Siger), Sao Pedro, Brazil, 2013.

[45]  H. Xu, W. Wang, X. Liu, F. Yuan, Y. Gao, Ind. Crops Prod. 2015, 76, 946.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  N. Liang, D. D. Kitts, Nutrients 2016, 8, 16.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  F. Wei, K. Furihata, M. Koda, F. Hu, T. Miyakawa, M. Tanokura, J. Agric. Food Chem. 2012, 60, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 22224944PubMed |

[48]  D. M. López-Barrera, K. Vázquez-Sánchez, M. G. F. Loarca-Piña, R. Campos-Vega, Food Chem. 2016, 212, 282.
         | Crossref | GoogleScholarGoogle Scholar | 27374534PubMed |

[49]  J. Park, J.-h. Yoon, S. Depuydt, J.-W. Oh, Y.-m. Jo, K. Kim, M. T. Brown, T. Han, Ecotoxicol. Environ. Saf. 2016, 126, 147.
         | Crossref | GoogleScholarGoogle Scholar | 26748376PubMed |

[50]  J. Lyu, J. Park, L. K. Pandey, S. Choi, H. Lee, J. De Saeger, S. Depuydt, T. Han, Ecotoxicol. Environ. Saf. 2018, 149, 225.
         | Crossref | GoogleScholarGoogle Scholar | 29182968PubMed |

[51]  E. Hulzebos, E. Dirven‐Van Breemen, W. Van Dis, H. Herbold, J. Hoekstra, R. Baerselman, C. A. M. van Gestel, D. M. M. Adema, L. Henzen, Environ. Toxicol. Chem. 1993, 12, 1079.
         | Crossref | GoogleScholarGoogle Scholar |