Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(i) Mono-Carboxylate and -Nitrate Systems

Simon Grabowsky https://orcid.org/0000-0002-3377-9474 A I , Allan H. White B H , Peter C. Healy C , Kim M. Lapere https://orcid.org/0000-0002-1821-9671 D , Seik Weng Ng E , Brian W. Skelton https://orcid.org/0000-0002-1515-6636 B , Duncan A. Wild https://orcid.org/0000-0002-8436-2847 B , Graham A. Bowmaker F I and John V. Hanna https://orcid.org/0000-0002-0644-3932 G I
+ Author Affiliations
- Author Affiliations

A University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland.

B University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia.

C Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, Qld 4111, Australia.

D University of New South Wales, School of Chemistry, Sydney, NSW 2052, Australia.

E University of Malaya, Department of Chemistry, 50603 Kuala Lumpur, Malaysia.

F University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.

G University of Warwick, Department of Physics, Gibbet Hill Rd., Coventry CV4 7AL, UK.

H Deceased.

I Corresponding authors. Email: simon.grabowsky@dcb.unibe.ch; g.bowmaker@auckland.ac.nz; j.v.hanna@warwick.ac.uk

Australian Journal of Chemistry 73(6) 556-569 https://doi.org/10.1071/CH19616
Submitted: 29 November 2019  Accepted: 4 February 2020   Published: 24 March 2020

Abstract

Neutral mononuclear molecular silver(i) carboxylate complexes of the form [(Ph3P)2Ag(O2XY)] with O2XY = O2CCH2Ph, O2CCHPh2, O2CC(CH3)3, O2CCH2C(CH3)3, and O2CCF3 (compounds 14 and ) have been investigated in the solid state using single-crystal X-ray structure determinations, 1D 31P CPMAS NMR and 2D 31P–31P CPCOSY NMR measurements, and ab initio computational modelling. The results show that these complexes contain P2AgO2 molecular cores with four-coordinate silver in which the carboxylate ligands are weakly bound to the silver atoms via the two oxygen atoms giving rise to unsymmetrical chelate units. Crystal structure determinations and solid-state NMR spectra have also been analysed for the mononuclear molecular silver(i) nitrate complex [(Ph3P)2Ag(O2NO)] () and two polymorphs of its toluene monosolvate (11α, β). In , the two PPh3 ligands are of the same chirality, whereas in 11α, β, they are opposed. The crystalline environments in the polymorphs have been explored by way of Hirshfeld surface analyses, after quantum-mechanical isolated-molecule calculations had shown that although the molecular energies of the experimental geometries of , and 11α, β are significantly different from each other and from the energies of the optimized geometries, the latter, in contrast, do not differ significantly from each other despite the conformational isomerism. It has further been shown using as an example that the energy dependence on variation of the P–Ag–P angle over a range of ~15° is only ~5 kJ mol−1. All this indicates that the forces arising from crystal packing result in significant perturbations in the experimental geometries, but do not alter the stereoisomerism caused by the donor atom array around the Ag atom. In the NMR study, a strong inverse correlation has been found between 1J(107/109Ag,31P) and the Ag–P bond length across all carboxylate and nitrate compounds.


References

[1]     (a) R. J. Lancashire, in Comprehensive Coordination Chemistry (Eds G. Wilkinson, R. D. Gillard, J. A. McCleverty) 1987, Vol. 5, p. 775ff (Pergamon: Oxford).
         (b) M. C. Gimeno, A. Laguna, in Comprehensive Coordination Chemistry II (Ed. D. E. Fenton) 2004, Vol. 6, p. 911ff (Elsevier: Amsterdam).

[2]  C. E. Holloway, M. Melnik, W. A. Nevin, W. Liu, J. Coord. Chem. 1995, 35, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. Angel, A. V. Harcourt, J. Chem. Soc. 1902, 81, 1385.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Angel, J. Chem. Soc. 1906, 89, 345.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, G. J. Millar, B. W. Skelton, A. H. White, J. Phys. Chem. 1995, 99, 3909.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) An earlier determination is recorded in space group Cc: L.-S. Zheng, H.-H. Yang, Q.-E. Zhang, Jiegou Huaxue (Chin. J. Struct. Chem.) 1991, 10, 97 (CCDC: KIXCAV). (See also: (c) R. E. Marsh, Acta Crystallogr. B 1997, 53, 317 (KIXCAV01).)

[6]  G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, J. C. Reid, C. E. F. Rickard, A. H. White, J. Chem. Soc., Dalton Trans. 2000, 753.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  D. W. Hartley, G. Smith, D. S. Sagatys, C. H. L. Kennard, J. Chem. Soc., Dalton Trans. 1991, 2735.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  D. S. Sagatys, G. Smith, R. C. Bott, D. E. Lynch, C. H. L. Kennard, Polyhedron 1993, 12, 709.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G. A. Bowmaker, J. V. Hanna, B. W. Skelton, A. H. White, Dalton Trans. 2012, 41, 5409.
         | Crossref | GoogleScholarGoogle Scholar | 22441503PubMed |

[10]  G. H. Penner, W. Li, Inorg. Chem. 2004, 43, 5588.
         | Crossref | GoogleScholarGoogle Scholar | 15332810PubMed |

[11]  J. Shibata, K. Shimuzu, S. Satokawa, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 2003, 5, 2154.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  K. Vehlow, K. Koehler, S. Blechert, S. Dechert, F. Meyer, Eur. J. Inorg. Chem. 2005, 2727.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. Jiang, Z. Wu, D. Wu, W. Yang, R. Jin, Nanotechnology 2007, 18, 185603.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004, 108, 945.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  O. Siiman, L. A. Bumm, R. Callaghan, C. G. Blatchford, M. Kerker, J. Phys. Chem. 1983, 87, 1014.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Clarkson, C. Campbell, B. N. Rospendowski, W. E. Smith, J. Raman Spectrosc. 1991, 22, 771.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 1995, 11, 3712.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Rodger, W. E. Smith, G. Dent, M. Edmondson, J. Chem. Soc., Dalton Trans. 1996, 791.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. K. Caswell, C. M. Bender, C. J. Murphy, Nano Lett. 2003, 3, 667.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  F.-K. Liu, P.-W. Huang, Y.-C. Chang, F.-H. Ko, T.-C. Chu, J. Mater. Res. 2004, 19, 469.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K. M. Fromm, Chem. Rev. 2013, 113, 4708.
         | Crossref | GoogleScholarGoogle Scholar | 23488929PubMed |

[22]  V. Sambhy, M. M. MacBride, B. R. Peterson, A. Sen, J. Am. Chem. Soc. 2006, 128, 9798.
         | Crossref | GoogleScholarGoogle Scholar | 16866536PubMed |

[23]  G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, S. P. King, C. Pettinari, B. W. Skelton, A. H. White, Dalton Trans. 2011, 40, 7210.
         | Crossref | GoogleScholarGoogle Scholar | 21660345PubMed |

[24]  (a) S.-W. Ng, A. H. Othman, Acta Crystallogr. C 1997, 53, 1396.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) See also B. Femi-Onadenko, Z. Kristallogr. 1980, 152, 1159.(ACPSAG).

[25]  J. V. Hanna, S.-W. Ng, Acta Crystallogr. C 1999, 55, 9900031,.describing the ethanol monosolvate monohydrate (HIPVIL), a redetermination/correction of the sequihydrate

[26]  J. V. Hanna, S.-W. Ng, Acta Crystallogr. C 2000, 56, 24.
         | Crossref | GoogleScholarGoogle Scholar | 10710654PubMed |

[27]  S.-W. Ng, Acta Crystallogr. C 1998, 54, 743.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. A. Edwards, R. M. Harker, M. F. Mahon, K. C. Molloy, Inorg. Chim. Acta 2002, 328, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  D. J. Darensbourg, M. W. Holtcamp, B. Khandelwal, J. H. Reibenspies, Inorg. Chem. 1995, 34, 5390.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  N. Marsich, A. Camus, G. Nardin, J. Organomet. Chem. 1982, 239, 429.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) M. G. B. Drew, A. H. bin Othman, D. A. Edwards, R. Richards, Acta Crystallogr. B 1975, 31, 2695.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. S Batsanov, Y. T. Struchkov, Koord. Khim. 1982, 8, 1141.(ACPHCU01)
      (c) D. J. Darensbourg, M. W. Holtcamp, E. M. Longridge, K. K. Klausmeyer, J. H. Reibenspies, Inorg. Chim. Acta 1994, 227, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. D. Hart, P. C. Healy, G. A. Hope, D. W. Turner, A. H. White, J. Chem. Soc., Dalton Trans. 1994, 773.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  (a) G. G. Messmer, G. J. Palenik, Inorg. Chem. 1969, 8, 2750.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. D. Hart, P. C. Healy, M. L. Peake, A. H. White, Aust. J. Chem. 1998, 51, 67.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R.-N. Yang, T.-X. Li, Y.-A. Sun, X.-Y. Hu, D.-M. Jin, B.-S. Luo, Jiegou Huaxue (Chin. J. Struct. Chem.) 2000, 19, 126.(NITPPC02).
      (d) A useful addition is provided by the structure of [{(p-tol)3Ag(O2NO)]: C. Pettinari, G. G. Lobbia, G. Sclavi, D. Leonesi, M. Colapietro, G. Portalone, Polyhedron 1995, 14, 1709.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. Römbke, A. Schier, H. Schmidbaur, S. Cronje, H. Raubenheimer, Inorg. Chim. Acta 2004, 357, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  (a) P. F. Barron, J. C. Dyason, P. C. Healy, L. M. Engelhardt, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1986, 1965.(DUSZOG); redeterminations are described in
      (b) Z. Lansun, Y. Wenbin, Y. Huahui, Xiamen Dax. Xuebao (Chin.) – J. Xiamen Univ. (Nat. Sci.) 1998, 27, 437.(DUSZOG01).
         (c) F. Cheng, W. Levason, M. Webster, CSD, Private communication (2009 ) (DUSZOG02).

[36]  C. S. W. Harker, R. T. Tiekink, Acta Crystallogr. C 1989, 45, 1815.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  P. G. Jones, Acta Crystallogr. C 1993, 49, 1148.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. Pines, M. G. Gibby, J. S. Waugh, J. Chem. Phys. 1973, 59, 569.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  E. R. Andrew, A. Bradbury, R. Eades, Nature 1958, 182, 1659.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  E. O. Stejskal, J. Schaefer, J. Magn. Reson. 1975, 18, 560.

[42]  G. Bodenhausen, R. L. Vold, R. R. Vold, J. Magn. Reson. 1980, 37, 93.

[43]  D. Marion, K. Wuthrich, Biochem. Biophys. Res. Commun. 1983, 113, 967.
         | Crossref | GoogleScholarGoogle Scholar | 6307308PubMed |

[44]  T. Allman, J. Magn. Reson. 1989, 83, 637.

[45]  (a) J. V. Hanna, M. E. Smith, S. N. Stuart, P. C. Healy, J. Phys. Chem. 1992, 96, 7560.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. V. Hanna, R. D. Hart, P. C. Healy, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1998, 2321.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656.
         | Crossref | GoogleScholarGoogle Scholar | 16833898PubMed |

[47]  F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
         | Crossref | GoogleScholarGoogle Scholar | 21384027PubMed |

[49]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  K. A. Peterson, C. Puzzarini, Theor. Chem. Acc. 2005, 114, 283.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  (a) M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. J. Edwards, C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Faraday Discuss. 2017, 203, 93.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal Explorer (Version 3.0) 2010 (University of Western Australia: Perth).

[53]  M. A. Spackman, J. J. McKinnon, CrystEngComm 2002, 4, 378.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. B 2004, 60, 627.
         | Crossref | GoogleScholarGoogle Scholar | 15534375PubMed |

[55]  J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm 2008, 10, 377.

[57]  J. Bernstein, Cryst. Growth Des. 2011, 11, 632.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  (a) J. V. Hanna, S. W. Ng, Acta Crystallogr. C 1999, 55, 9900029. (HIPVEH).
      (b) A. Cingolani, Effendy, M. Pellei, C. Pettinari, C. Santini, B. W. Skelton, A. H. White, Inorg. Chem. 2002, 41, 6633.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  J. A. Halfen, W. B. Tolman, Acta Crystallogr. C 1995, 51, 215.
         | Crossref | GoogleScholarGoogle Scholar | 7734085PubMed |

[60]  L. Nørskov-Lauritsen, H.-B. Bürgi, J. Comput. Chem. 1985, 6, 216.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  O. Wu, R. Wasylishen, Organometallics 1992, 11, 3242.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  See pp. 54–57 in: R. K. Harris, Nuclear Magnetic Resonance Spectroscopy 1986 (Longman: London).

[63]  G. A. Bowmaker, J. V. Hanna, C. E. F. Rickard, A. S. Lipton, J. Chem. Soc., Dalton Trans. 2001, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  G. A. Bowmaker, J. V. Hanna, R. D. Hart, P. C. Healy, S. P. King, F. Marchetti, C. Pettinari, B. W. Skelton, A. Tabacaru, A. H. White, J. Chem. Soc., Dalton Trans. 2012, 41, 7513.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  S. W. Ng, A. H. Othman, Acta Crystallogr. C 1997, 53, 1396.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  L. J. Baker, G. A. Bowmaker, D. Camp, Effendy, P. C. Healy, H. Schmidbaur, O. Steigelmann, A. H. White, Inorg. Chem. 1992, 31, 3656.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  E. C. Alyea, J. Malito, J. H. Nelson, Inorg. Chem. 1987, 26, 4294.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  E. L. Muetterties, C. W. Alegranti, J. Am. Chem. Soc. 1972, 94, 6386.
         | Crossref | GoogleScholarGoogle Scholar |