Development of a Tethered Palladium–BODIPY Dual Catalyst for Enhanced Photo- and Thermally Activated Catalysis, and for Promoting Sequential Reactivity
Danfeng Wang A , Nicholas S. D. Solomon A , Indrek Pernik A B , Barbara A. Messerle A B C and Sinead T. Keaveney A CA Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
B Current address: School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
C Corresponding authors. Email: barbara.messerle@sydney.edu.au; sinead.keaveney@mq.edu.au
Australian Journal of Chemistry 73(10) 979-986 https://doi.org/10.1071/CH19569
Submitted: 1 November 2019 Accepted: 19 December 2019 Published: 24 April 2020
Abstract
In recent years there has been a growing interest in merging different types of catalysis to create new multistep catalytic processes. However, the majority of reported dual catalysis strategies use a mixture of individual catalysts, with limited reports of dual catalysis reactions where the different catalysts are combined in a single compound. This work reports the synthesis of a tethered palladium-BODIPY dual catalyst to enable increased synergistic interactions between the catalytic centres. Detailed analysis, including single crystal X-ray crystallography, absorption, fluorescence, and phosphorescence measurements, and kinetic analyses to determine singlet oxygen quantum yields, confirm that chemical tethering results in a significant increase in the photocatalytic potential of the palladium-BODIPY dual catalyst, relative to the parent BODIPY chromophore. Interestingly, the palladium-BODIPY complex also exhibited rare long-lived room temperature phosphorescence. Catalytic applications of the palladium-BODIPY dual catalyst indicate that chemical tethering increases the reactivity of the catalytic centres for both photocatalytic oxidation of thioanisole and palladium catalysed Suzuki–Miyaura cross coupling, highlighting that enhancements in both photo and thermally activated catalysis can be achieved on chemical tethering. In addition, the dual catalytic potential of the palladium-BODIPY catalyst was demonstrated using a representative sequential photocatalytic oxidation–cross coupling reaction.
References
[1] (a) L. Brandsma, S. F. Vasilevsky, H. D. Verkruijsse, Application of Transition Metal Catalysts in Organic Synthesis 2012 (Springer Science & Business Media: Berlin).(b) A. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012, 3, 633.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q.-L. Zhou, Angew. Chem. Int. Ed. 2016, 55, 5352.
| Crossref | GoogleScholarGoogle Scholar |
(e) Q. Wang, Y. Su, L. Li, H. Huang, Chem. Soc. Rev. 2016, 45, 1257.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527.
| Crossref | GoogleScholarGoogle Scholar | 20571569PubMed |
(b) L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57, 10034.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Michelin, N. Hoffmann, ACS Catal. 2018, 8, 12046.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904.
| Crossref | GoogleScholarGoogle Scholar | 26465741PubMed |
(b) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev. 2016, 45, 3026.
| Crossref | GoogleScholarGoogle Scholar | 27094803PubMed |
(b) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Rev. Chem. 2017, 1, 0052.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. C. Koziar, D. O. Cowan, Acc. Chem. Res. 1978, 11, 334.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. A. Ghogare, A. Greer, Chem. Rev. 2016, 116, 9994.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Bian, A. K. Singh, L. Niu, H. Yi, A. Lei, Asian J. Org. Chem. 2017, 6, 386.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) V. Lakshmi, M. Ravikanth, Dalton Trans. 2012, 41, 5903.
| Crossref | GoogleScholarGoogle Scholar | 22460271PubMed |
(b) X.-F. Zhang, X. Yang, J. Phys. Chem. B 2013, 117, 5533.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing, H. Zhang, RSC Adv. 2013, 3, 13417.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Yang, Q. Guo, H. Chen, Z. Zhou, Z. Guo, Z. Shen, Chem. Commun. 2013, 49, 3940.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. P. Rey, D. G. Abradelo, N. Santschi, C. A. Strassert, R. Gilmour, Eur. J. Org. Chem. 2017, 2017, 2170.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. G. Awuah, J. Polreis, V. Biradar, Y. You, Org. Lett. 2011, 13, 3884.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Sun, F. Zhong, X. Yi, J. Zhao, Inorg. Chem. 2013, 52, 6299.
| Crossref | GoogleScholarGoogle Scholar | 23327589PubMed |
(b) G. M. Chu, I. Fernández, A. Guerrero-Martínez, C. Ramírez de Arellano, M. A. Sierra, Eur. J. Inorg. Chem. 2016, 2016, 844.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Zheng, R. P. Sabatini, W.-F. Fu, M.-S. Eum, W. W. Brennessel, L. Wang, D. W. McCamant, R. Eisenberg, Proc. Natl. Acad. Sci. USA 2015, 112, E3987.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. E. Aksakal, E. Tanrıverdi Eçik, H. H. Kazan, G. Yenilmez Çiftçi, F. Yuksel, Photochem. Photobiol. Sci. 2019, 18, 2012.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) F. Geist, A. Jackel, R. F. Winter, Inorg. Chem. 2015, 54, 10946.
| Crossref | GoogleScholarGoogle Scholar | 26540413PubMed |
(b) G.-G. Luo, K. Fang, J.-H. Wu, J. Mo, Chem. Commun. 2015, 51, 12361.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Geist, A. Jackel, P. Irmler, M. Linseis, S. Malzkuhn, M. Kuss-Petermann, O. S. Wenger, R. F. Winter, Inorg. Chem. 2017, 56, 914.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Li, M. F. Mark, H. Lv, D. W. McCamant, R. Eisenberg, J. Am. Chem. Soc. 2018, 140, 2575.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. N. W. Toussaint, R. T. Calkins, S. Lee, B. W. Michel, J. Am. Chem. Soc. 2018, 140, 13151.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Ghosh, H. Takeda, D. C. Fabry, Y. Tamaki, O. Ishitani, ACS Sustain. Chem.& Eng. 2019, 7, 2648.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) Y. Li, K. Zhou, Z. Wen, S. Cao, X. Shen, M. Lei, L. Gong, J. Am. Chem. Soc. 2018, 140, 15850.
| Crossref | GoogleScholarGoogle Scholar | 30372057PubMed |
(b) T. Rigotti, A. Casado-Sánchez, S. Cabrera, R. Pérez-Ruiz, M. Liras, V. A. de la Peña O’Shea, J. Alemán, ACS Catal. 2018, 8, 5928.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. C. Dissanayake, P. O. Ebukuyo, Y. J. Dhahir, K. Wheeler, H. He, Chem. Commun. 2019, 55, 4973.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891.
| Crossref | GoogleScholarGoogle Scholar | 17924696PubMed |
(b) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
| Crossref | GoogleScholarGoogle Scholar |
(b) W.-J. Zhou, K.-H. Wang, J.-X. Wang, J. Org. Chem. 2009, 74, 5599.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. T. Reeves, D. R. Fandrick, Z. Tan, J. J. Song, H. Lee, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, 12, 4388.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z. Yang, W. Qin, J. W. Lam, S. Chen, H. H. Sung, I. D. Williams, B. Z. Tang, Chem. Sci. 2013, 4, 3725.
| Crossref | GoogleScholarGoogle Scholar |
[14] R. P. Sabatini, B. Lindley, T. M. McCormick, T. Lazarides, W. W. Brennessel, D. W. McCamant, R. Eisenberg, J. Phys. Chem. B 2016, 120, 527.
| Crossref | GoogleScholarGoogle Scholar | 26730460PubMed |
[15] P. Irmler, R. F. Winter, Organometallics 2018, 37, 235.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Zhong, A. Karatay, L. Zhao, J. Zhao, C. He, C. Zhang, H. G. Yaglioglu, A. Elmali, B. Küçüköz, M. Hayvali, Inorg. Chem. 2015, 54, 7803.
| Crossref | GoogleScholarGoogle Scholar | 26230144PubMed |
[17] (a) N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130.
| Crossref | GoogleScholarGoogle Scholar | 21796324PubMed |
(b) T. Slanina, P. Shrestha, E. Palao, D. Kand, J. A. Peterson, A. S. Dutton, N. Rubinstein, R. Weinstain, A. H. Winter, P. Klán, J. Am. Chem. Soc. 2017, 139, 15168.
| Crossref | GoogleScholarGoogle Scholar |
[18] V. Lakshmi, W.-Z. Lee, M. Ravikanth, Dalton Trans. 2014, 43, 16006.
| Crossref | GoogleScholarGoogle Scholar | 25232656PubMed |
[19] (a) A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42, 77.
| Crossref | GoogleScholarGoogle Scholar | 23014776PubMed |
(b) M. Liras, M. Iglesias, F. Sánchez, Macromolecules 2016, 49, 1666.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Üçüncü, E. Karakuş, E. Kurulgan Demirci, M. Sayar, S. Dartar, M. Emrullahoğlu, Org. Lett. 2017, 19, 2522.
| Crossref | GoogleScholarGoogle Scholar |
(d) Á. Ramos-Torres, E. Avellanal-Zaballa, A. Prieto-Castañeda, F. García-Garrido, J. Bañuelos, A. R. Agarrabeitia, M. J. Ortiz, Org. Lett. 2019, 21, 4563.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) B. Marydasan, A. K. Nair, D. Ramaiah, J. Phys. Chem. B 2013, 117, 13515.
| Crossref | GoogleScholarGoogle Scholar | 24063545PubMed |
(b) D. M. Marin, S. Payerpaj, G. S. Collier, A. L. Ortiz, G. Singh, M. Jones, M. G. Walter, Phys. Chem. Chem. Phys. 2015, 17, 29090.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Ji, J. Ge, D. Escudero, Z. Wang, J. Zhao, D. Jacquemin, J. Org. Chem. 2015, 80, 5958.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Miao, W. Hu, T. He, H. Tao, Q. Wang, R. Chen, L. Jin, H. Zhao, X. Lu, Q. Fan, W. Huang, Chem. Sci. 2019, 10, 3096.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127, 12162.
| Crossref | GoogleScholarGoogle Scholar | 16131160PubMed |
(b) W. Hu, Y. Lin, X.-F. Zhang, M. Feng, S. Zhao, J. Zhang, Dyes Pigments 2019, 164, 139.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) G. Durand, F. Choteau, B. Pucci, F. A. Villamena, J. Phys. Chem. A 2008, 112, 12498.
| Crossref | GoogleScholarGoogle Scholar | 18998656PubMed |
(b) M. Rosselin, F. Choteau, K. Zéamari, K. M. Nash, A. Das, R. Lauricella, E. Lojou, B. Tuccio, F. A. Villamena, G. Durand, J. Org. Chem. 2014, 79, 6615.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. Ouannes, T. Wilson, J. Am. Chem. Soc. 1968, 90, 6527.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. Ye, Y. Zhang, A. Ding, Y. Hu, H. Guo, Sci. Rep. 2018, 8, 2205.
| Crossref | GoogleScholarGoogle Scholar | 29396475PubMed |
[25] (a) M. R. Biscoe, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2008, 130, 6686.
| Crossref | GoogleScholarGoogle Scholar | 18447360PubMed |
(b) H. Li, C. C. C. Johansson Seechurn, T. J. Colacot, ACS Catal. 2012, 2, 1147.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem. 2017, 1, 0025.
| Crossref | GoogleScholarGoogle Scholar |
[26] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |