Recent Advances in Heterogeneous Catalyst Design for Biorefining
Alexander C. Lamb A , Adam F. Lee A and Karen Wilson A BA Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, Vic. 3000, Australia.
B Corresponding author. Email: karen.wilson2@rmit.edu.au
Australian Journal of Chemistry 73(10) 832-852 https://doi.org/10.1071/CH19558
Submitted: 30 October 2019 Accepted: 6 March 2020 Published: 15 June 2020
Abstract
Biorefineries are a new concept in chemical manufacturing in which naturally occurring, sustainable biomass resources such as forestry and agricultural waste are converted to diverse fuel and chemical product streams, akin to the processing of non-renewable fossil fuels by petrochemical refineries. Biomass derived from waste agricultural and forestry materials or non-food crops offers the most easily implemented and economical solutions for transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine, and speciality chemicals necessary to secure the future needs of society. The successful implementation of biorefineries can address concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change, and will be underpinned by catalytic processes to facilitate the co-production of platform chemicals and biofuels. Catalysis is a central theme in sustainable chemistry, lowering energy and resource requirements while minimising waste production. In contrast to fossil-derived crude oil, which has low oxygen content, the high oxygen and water content of biomass feedstocks presents challenges for their utilisation and requires innovations in catalyst and process design for the selective conversion of these hydrophilic, bulky feedstocks into fuels or high-value chemicals. This article highlights how methods to control porosity, solid acid and base character, and surface hydrophobicity are essential components of a toolkit for the design of heterogeneous catalysts for biomass processing.
References
[1] N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52.| Crossref | GoogleScholarGoogle Scholar |
[2] J. J. Bozell, Clean: Soil, Air, Water 2008, 36, 641.
[3] P. Haro, Á. L. Villanueva Perales, R. Arjona, P. Ollero, Biofuels Bioprod. Biorefin. 2014, 8, 155.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Beller, G. Centi, ChemSusChem 2009, 2, 459.
| Crossref | GoogleScholarGoogle Scholar | 19536752PubMed |
[5] C. H. Christensen, Top. Catal. 2009, 52, 205.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Wilson, A. F. Lee, Philos. Trans. R. Soc., A 2016, 374, 20150081.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Rinaldi, F. Schüth, Energy Environ. Sci. 2009, 2, 610.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. A. Pfaltzgraff, M. De Bruyn, E. C. Cooper, V. Budarin, J. H. Clark, Green Chem. 2013, 15, 307.
| Crossref | GoogleScholarGoogle Scholar |
[10] T. I. J. Dugmore, J. H. Clark, J. Bustamante, J. A. Houghton, A. S. Matharu, Top. Curr. Chem. 2017, 375, 46.
| Crossref | GoogleScholarGoogle Scholar |
[11] European Climate Foundation, Wasted: Europe’s Untapped Resource 2014. Available at https://theicct.org/sites/default/files/publications/WASTED-final.pdf (accessed 26 May 2020).
[12] A. Parker, Energy Environ. 2015, 26, 847.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Pickin, P. Randell, J. Trinh, B. Grant, in National Waste Report 2018 2018, pp. 1–33 (Department of the Environment and Energy and Blue Environment Pty Ltd: Melbourne). Available at: https://www.environment.gov.au/system/files/resources/7381c1de-31d0-429b-912c-91a6dbc83af7/files/national-waste-report-2018.pdf (accessed 26 May 2020)
[14] United States Environmental Protection Agency, Understanding Global Warming Potentials 2019. Available at: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed 19 October 2019).
[15] W. Clarke, B. McCabe, Capturing the True Wealth of Australia’s Waste 2017, The Conversation. Available at: http://theconversation.com/capturing-the-true-wealth-of-australias-waste-82644 (accessed18 October 2019).
[16] M. Hoogwijk, A. Faaij, R. van den Broek, G. Berndes, D. Gielen, W. Turkenburg, Biomass Bioenergy 2003, 25, 119.
| Crossref | GoogleScholarGoogle Scholar |
[17] K. L. Kadam, L. H. Forrest, W. A. Jacobson, Biomass Bioenergy 2000, 18, 369.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. Heux, I. Meynial-Salles, M. J. O’Donohue, C. Dumon, Biotechnol. Adv. 2015, 33, 1653.
| Crossref | GoogleScholarGoogle Scholar | 26303096PubMed |
[19] G. W. Huber, A. Corma, Angew. Chem. Int. Ed. 2007, 46, 7184.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. L. Kenney, W. A. Smith, G. L. Gresham, T. L. Westover, Biofuels 2013, 4, 111.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. L. Williams, T. L. Westover, R. M. Emerson, J. S. Tumuluru, C. Li, BioEnergy Res. 2016, 9, 1.
| Crossref | GoogleScholarGoogle Scholar |
[22] D. Carpenter, T. L. Westover, S. Czernik, W. Jablonski, Green Chem. 2014, 16, 384.
| Crossref | GoogleScholarGoogle Scholar |
[23] Z. Yang, A. Kumar, R. L. Huhnke, Renew. Sustain. Energy Rev. 2015, 50, 859.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. A. Lappas, K. G. Kalogiannis, E. F. Iliopoulou, K. S. Triantafyllidis, S. D. Stefanidis, WIREs Energy and Environment 2012, 1, 285.
| Crossref | GoogleScholarGoogle Scholar |
[25] W. Li, Q. Dang, R. Smith, R. C. Brown, M. M. Wright, ACS Sustain. Chem. & Eng. 2017, 5, 1528.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. Fatih Demirbas, Appl. Energy 2009, 86, S151.
| Crossref | GoogleScholarGoogle Scholar |
[27] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol. 2005, 96, 673.
| Crossref | GoogleScholarGoogle Scholar | 15588770PubMed |
[28] W. G. Glasser, R. S. Wright, Biomass Bioenergy 1998, 14, 219.
| Crossref | GoogleScholarGoogle Scholar |
[29] X. Zhao, K. Cheng, D. Liu, Appl. Microbiol. Biotechnol. 2009, 82, 815.
| Crossref | GoogleScholarGoogle Scholar | 19214499PubMed |
[30] P. Alvira, E. Tomás-Pejó, M. Ballesteros, M. J. Negro, Bioresour. Technol. 2010, 101, 4851.
| Crossref | GoogleScholarGoogle Scholar | 20042329PubMed |
[31] (a) W. S. Mok, M. J. Antal, G. Varhegyi, Ind. Eng. Chem. Res. 1992, 31, 94.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Rinaldi, F. Schüth, ChemSusChem 2009, 2, 1096.
| Crossref | GoogleScholarGoogle Scholar |
[32] M. Sasaki, B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri, K. Arai, J. Supercrit. Fluids 1998, 13, 261.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. B. Binder, R. T. Raines, Proc. Natl. Acad. Sci. USA 2010, 107, 4516.
| Crossref | GoogleScholarGoogle Scholar | 20194793PubMed |
[34] G. W. Huber, J. A. Dumesic, Catal. Today 2006, 111, 119.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. Muzamal, K. Jedvert, H. Theliander, A. Rasmuson, Holzforschung 2015, 69, 61.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. Zakzeski, P. C. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
| Crossref | GoogleScholarGoogle Scholar | 20218547PubMed |
[37] I. Agirrezabal-Telleria, I. Gandarias, P. L. Arias, Catal. Today 2014, 234, 42.
| Crossref | GoogleScholarGoogle Scholar |
[38] (a) A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, C. E. Wyman, Science 2014, 344, 1246843.
| Crossref | GoogleScholarGoogle Scholar | 24833396PubMed |
(b) L. Cao, I. K. M. Yu, Y. Liu, X. Ruan, D. C. W. Tsang, A. J. Hunt, Y. S. Ok, H. Song, S. Zhang, Bioresour. Technol. 2018, 269, 465.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Pineda, A. F. Lee, Appl. Petrochem. Res. 2016, 6, 243.
| Crossref | GoogleScholarGoogle Scholar |
[39] T. Renders, S. Van den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551.
| Crossref | GoogleScholarGoogle Scholar |
[40] (a) P. Ferrini, R. Rinaldi, Angew. Chem. Int. Ed. 2014, 53, 8634.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2016, 55, 8164.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. V. Galkin, J. S. M. Samec, ChemSusChem 2016, 9, 1544.
| Crossref | GoogleScholarGoogle Scholar | 27273230PubMed |
[42] Y. Song, J. K. Mobley, A. H. Motagamwala, M. Isaacs, J. A. Dumesic, J. Ralph, A. F. Lee, K. Wilson, M. Crocker, Chem. Sci. 2018, 9, 8127.
| Crossref | GoogleScholarGoogle Scholar | 30542563PubMed |
[43] M. Dashtban, A. Gilbert, P. Fatehi, RSC Adv. 2014, 4, 2037.
| Crossref | GoogleScholarGoogle Scholar |
[44] (a) R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499.
| Crossref | GoogleScholarGoogle Scholar | 23394139PubMed |
(b) M. E. Zakrzewska, E. Bogel-Łukasik, R. Bogel-Łukasik, Chem. Rev. 2011, 111, 397.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. H. Giang, A. Osatiashtiani, V. C. Dos Santos, A. F. Lee, D. R. Wilson, K. W. Waldron, K. Wilson, Catalysts 2014, 4, 414.
| Crossref | GoogleScholarGoogle Scholar |
[46] L. Hu, G. Zhao, W. W. Hao, X. Tang, Y. Sun, L. Lin, S. Liu, RSC Adv. 2012, 2, 11184.
| Crossref | GoogleScholarGoogle Scholar |
[47] S. Dutta, S. De, B. Saha, ChemPlusChem 2012, 77, 259.
| Crossref | GoogleScholarGoogle Scholar |
[48] T. Buntara, S. Noel, P. H. Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed. 2011, 50, 7083.
| Crossref | GoogleScholarGoogle Scholar |
[49] J. He, K. Huang, K. J. Barnett, S. H. Krishna, D. M. Alonso, Z. J. Brentzel, S. P. Burt, T. Walker, W. F. Banholzer, C. T. Maravelias, I. Hermans, J. A. Dumesic, G. W. Huber, Faraday Discuss. 2017, 202, 247.
| Crossref | GoogleScholarGoogle Scholar | 28678237PubMed |
[50] Y.-C. Lin, G. W. Huber, Energy Environ. Sci. 2009, 2, 68.
| Crossref | GoogleScholarGoogle Scholar |
[51] J.-P. Dacquin, A. F. Lee, K. Wilson, in Catalysis for Alternative Energy Generation (Eds L. Guczi, A. Erdôhelyi) 2012, pp. 263–304 (Springer: New York, NY).
[52] (a) J. M. Thomas, Proc. R. Soc. A 2012, 468, 1884.
(b) G. A. Somorjai, H. Frei, J. Y. Park, J. Am. Chem. Soc. 2009, 131, 16589.
| Crossref | GoogleScholarGoogle Scholar |
[53] P. Sudarsanam, E. Peeters, E. V. Makshina, V. I. Parvulescu, B. F. Sels, Chem. Soc. Rev. 2019, 48, 2366.
| Crossref | GoogleScholarGoogle Scholar | 30785143PubMed |
[54] R. Rinaldi, F. Schueth, Energy Environ. Sci. 2009, 2, 610.
| Crossref | GoogleScholarGoogle Scholar |
[55] A. Osatiashtiani, A. F. Lee, M. Granollers, D. R. Brown, L. Olivi, G. Morales, J. A. Melero, K. Wilson, ACS Catal. 2015, 5, 4345.
| Crossref | GoogleScholarGoogle Scholar |
[56] H. Xiong, H. N. Pham, A. K. Datye, Green Chem. 2014, 16, 4627.
| Crossref | GoogleScholarGoogle Scholar |
[57] Y. J. Pagán-Torres, J. M. R. Gallo, D. Wang, H. N. Pham, J. A. Libera, C. L. Marshall, J. W. Elam, A. K. Datye, J. A. Dumesic, ACS Catal. 2011, 1, 1234.
| Crossref | GoogleScholarGoogle Scholar |
[58] J. W. Elam, C. L. Marshall, J. A. Libera, J. A. Dumesic, Y. J. Pagan-Torres, U.S. Patent 8741800 2014.
[59] H. N. Pham, A. E. Anderson, R. L. Johnson, T. J. Schwartz, B. J. O’Neill, P. Duan, K. Schmidt-Rohr, J. A. Dumesic, A. K. Datye, ACS Catal. 2015, 5, 4546.
| Crossref | GoogleScholarGoogle Scholar |
[60] B. J. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 5, 1804.
| Crossref | GoogleScholarGoogle Scholar |
[61] J.-P. Dacquin, H. E. Cross, D. R. Brown, T. Düren, J. J. Williams, A. F. Lee, K. Wilson, Green Chem. 2010, 12, 1383.
| Crossref | GoogleScholarGoogle Scholar |
[62] J. Dijkmans, M. Dusselier, D. Gabriëls, K. Houthoofd, P. C. M. M. Magusin, S. Huang, Y. Pontikes, M. Trekels, A. Vantomme, L. Giebeler, S. Oswald, B. F. Sels, ACS Catal. 2015, 5, 928.
| Crossref | GoogleScholarGoogle Scholar |
[63] R. K. Zeidan, S.-J. Hwang, M. E. Davis, Angew. Chem. Int. Ed. 2006, 45, 6332.
| Crossref | GoogleScholarGoogle Scholar |
[64] V. R. Bakuru, D. Davis, S. B. Kalidindi, Dalton Trans. 2019, 8573.
| Crossref | GoogleScholarGoogle Scholar | 31157815PubMed |
[65] A. M. Robinson, J. E. Hensley, J. W. Medlin, ACS Catal. 2016, 6, 5026.
| Crossref | GoogleScholarGoogle Scholar |
[66] S. Sankaranarayanapillai, S. Sreekumar, J. Gomes, A. Grippo, G. E. Arab, M. Head-Gordon, F. D. Toste, A. T. Bell, Angew. Chem. Int. Ed. 2015, 54, 4673.
| Crossref | GoogleScholarGoogle Scholar |
[67] C. M. A. Parlett, M. A. Isaacs, S. K. Beaumont, L. M. Bingham, N. S. Hondow, K. Wilson, A. F. Lee, Nat. Mater. 2015, 15, 178.
[68] H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
| Crossref | GoogleScholarGoogle Scholar | 22280456PubMed |
[69] H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
| Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |
[70] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar | 19384447PubMed |
[71] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
| Crossref | GoogleScholarGoogle Scholar | 18817383PubMed |
[72] Y.-T. Liao, B. M. Matsagar, K. C. W. Wu, ACS Sustain. Chem.& Eng. 2018, 6, 13628.
| Crossref | GoogleScholarGoogle Scholar |
[73] A. Herbst, C. Janiak, CrystEngComm 2017, 19, 4092.
| Crossref | GoogleScholarGoogle Scholar |
[74] Z. Wang, Q. Chen, Green Chem. 2016, 18, 5884.
| Crossref | GoogleScholarGoogle Scholar |
[75] F. G. Cirujano, A. Corma, F. X. Llabrés i Xamena, Chem. Eng. Sci. 2015, 124, 52.
| Crossref | GoogleScholarGoogle Scholar |
[76] A. Herbst, C. Janiak, New J. Chem. 2016, 40, 7958.
| Crossref | GoogleScholarGoogle Scholar |
[77] R. Fang, H. Liu, R. Luque, Y. Li, Green Chem. 2015, 17, 4183.
| Crossref | GoogleScholarGoogle Scholar |
[78] R. Fang, R. Luque, Y. Li, Green Chem. 2016, 18, 3152.
| Crossref | GoogleScholarGoogle Scholar |
[79] E. V. Perez, C. Karunaweera, I. H. Musselman, K. J. Balkus, J. P. Ferraris, Processes 2016, 4, 32.
| Crossref | GoogleScholarGoogle Scholar |
[80] P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053.
| Crossref | GoogleScholarGoogle Scholar | 26580002PubMed |
[81] S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548.
| Crossref | GoogleScholarGoogle Scholar | 23060270PubMed |
[82] H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O’Keeffe, O. M. Yaghi, Science 2007, 316, 268.
| Crossref | GoogleScholarGoogle Scholar | 17431178PubMed |
[83] Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 2014, 53, 2878.
| Crossref | GoogleScholarGoogle Scholar |
[84] X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
| Crossref | GoogleScholarGoogle Scholar | 22821129PubMed |
[85] M. Rose, ChemCatChem 2014, 6, 1166.
[86] Y. Peng, Z. Hu, Y. Gao, D. Yuan, Z. Kang, Y. Qian, N. Yan, D. Zhao, ChemSusChem 2015, 8, 3208.
| Crossref | GoogleScholarGoogle Scholar | 26448524PubMed |
[87] P. J. C. Hausoul, T. M. Eggenhuisen, D. Nand, M. Baldus, B. M. Weckhuysen, R. J. M. Klein Gebbink, P. C. A. Bruijnincx, Catal. Sci. Technol. 2013, 3, 2571.
| Crossref | GoogleScholarGoogle Scholar |
[88] S. Mondal, J. Mondal, A. Bhaumik, ChemCatChem 2015, 7, 3570.
| Crossref | GoogleScholarGoogle Scholar |
[89] K.-i. Shimizu, R. Uozumi, A. Satsuma, Catal. Commun. 2009, 10, 1849.
| Crossref | GoogleScholarGoogle Scholar |
[90] (a) L. Wang, P. Ye, F. Yuan, S. Li, Z. Ye, Int. J. Hydrogen Energy 2015, 40, 14790.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Zhao, Y. Kou, A. A. Lemonidou, X. Li, J. A. Lercher, Chem. Commun. 2010, 412.
| Crossref | GoogleScholarGoogle Scholar |
[91] P. Bhanja, A. Bhaumik, Fuel 2016, 185, 432.
| Crossref | GoogleScholarGoogle Scholar |
[92] J. Shi, Y. Wang, W. Yang, Y. Tang, Z. Xie, Chem. Soc. Rev. 2015, 44, 8877.
| Crossref | GoogleScholarGoogle Scholar | 26567526PubMed |
[93] C. S. Cundy, P. A. Cox, Chem. Rev. 2003, 103, 663.
| Crossref | GoogleScholarGoogle Scholar | 12630849PubMed |
[94] J. Weitkamp, Solid State Ion. 2000, 131, 175.
| Crossref | GoogleScholarGoogle Scholar |
[95] A. Corma, J. Catal. 2003, 216, 298.
| Crossref | GoogleScholarGoogle Scholar |
[96] G. A. Ozin, A. Kuperman, A. Stein, Angew. Chem. Int. Ed. Engl. 1989, 28, 359.
| Crossref | GoogleScholarGoogle Scholar |
[97] T. Ennaert, J. Van Aelst, J. Dijkmans, R. De Clercq, W. Schutyser, M. Dusselier, D. Verboekend, B. F. Sels, Chem. Soc. Rev. 2016, 45, 584.
| Crossref | GoogleScholarGoogle Scholar | 26691750PubMed |
[98] J. Přech, P. Pizarro, D. P. Serrano, J. Čejka, Chem. Soc. Rev. 2018, 47, 8263.
| Crossref | GoogleScholarGoogle Scholar | 30167621PubMed |
[99] (a) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
| Crossref | GoogleScholarGoogle Scholar |
[100] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
| Crossref | GoogleScholarGoogle Scholar |
[101] (a) A. Davidson, Curr. Opin. Colloid Interface Sci. 2002, 7, 92.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Galarneau, J. Iapichella, K. Bonhomme, F. Di Renzo, P. Kooyman, O. Terasaki, F. Fajula, Adv. Funct. Mater. 2006, 16, 1657.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Linssen, K. Cassiers, P. Cool, E. F. Vansant, Adv. Colloid Interface Sci. 2003, 103, 121.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. 1999, 38, 56.
| Crossref | GoogleScholarGoogle Scholar |
[102] Y. Wan, D. Zhao, Chem. Rev. 2007, 107, 2821.
| Crossref | GoogleScholarGoogle Scholar | 17580976PubMed |
[103] Y. Deng, J. Wei, Z. Sun, D. Zhao, Chem. Soc. Rev. 2013, 42, 4054.
| Crossref | GoogleScholarGoogle Scholar | 23258081PubMed |
[104] R. A. Ortega-Domínguez, H. Vargas-Villagrán, C. Peñaloza-Orta, K. Saavedra-Rubio, X. Bokhimi, T. E. Klimova, Fuel 2017, 198, 110.
| Crossref | GoogleScholarGoogle Scholar |
[105] J. P. Lourenço, M. I. Macedo, A. Fernandes, Catal. Commun. 2012, 19, 105.
| Crossref | GoogleScholarGoogle Scholar |
[106] F. Kleitz, S. Hei Choi, R. Ryoo, Chem. Commun. 2003, 2136.
| Crossref | GoogleScholarGoogle Scholar |
[107] C. Pirez, J. M. Caderon, J. P. Dacquin, A. F. Lee, K. Wilson, ACS Catal. 2012, 2, 1607.
| Crossref | GoogleScholarGoogle Scholar |
[108] J. P. Dacquin, A. F. Lee, C. Pirez, K. Wilson, Chem. Commun. 2012, 212.
| Crossref | GoogleScholarGoogle Scholar |
[109] V. Alfredsson, M. W. Anderson, Chem. Mater. 1996, 8, 1141.
| Crossref | GoogleScholarGoogle Scholar |
[110] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 1998, 396, 152.
| Crossref | GoogleScholarGoogle Scholar |
[111] Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, P. G. Bruce, Catal. Lett. 2009, 131, 146.
| Crossref | GoogleScholarGoogle Scholar |
[112] Y. Ren, Z. Ma, P. G. Bruce, Chem. Soc. Rev. 2012, 41, 4909.
| Crossref | GoogleScholarGoogle Scholar | 22653082PubMed |
[113] M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Chem. Soc. Rev. 2018, 47, 2680.
| Crossref | GoogleScholarGoogle Scholar | 29577123PubMed |
[114] M.-M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Chem. Soc. Rev. 2015, 44, 250.
| Crossref | GoogleScholarGoogle Scholar | 25301517PubMed |
[115] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem. Int. Ed. 2012, 51, 5810.
| Crossref | GoogleScholarGoogle Scholar |
[116] M. Guisnet, P. Magnoux, Appl. Catal. 1989, 54, 1.
| Crossref | GoogleScholarGoogle Scholar |
[117] J. C. Groen, J. C. Jansen, J. A. Moulijn, J. Pérez-Ramírez, J. Phys. Chem. B 2004, 108, 13062.
| Crossref | GoogleScholarGoogle Scholar |
[118] C. M. A. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev. 2013, 42, 3876.
[119] (a) J.-P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A. F. Lee, K. Wilson, J. Am. Chem. Soc. 2009, 131, 12896.
| Crossref | GoogleScholarGoogle Scholar | 19691316PubMed |
(b) J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010, 12, 296.
| Crossref | GoogleScholarGoogle Scholar |
[120] M. A. Isaacs, N. Robinson, B. Barbero, L. J. Durndell, J. C. Manayil, C. M. A. Parlett, C. D’Agostino, K. Wilson, A. F. Lee, J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 11814.
| Crossref | GoogleScholarGoogle Scholar |
[121] X. Y. Yang, Y. Li, A. Lemaire, J. G. Yu, B. L. Su, Pure Appl. Chem. 2009, 81, 2265.
| Crossref | GoogleScholarGoogle Scholar |
[122] T. Sen, G. J. T. Tiddy, J. L. Casci, M. W. Anderson, Angew. Chem. Int. Ed. 2003, 42, 4649.
| Crossref | GoogleScholarGoogle Scholar |
[123] C. Danumah, S. Vaudreuil, L. Bonneviot, M. Bousmina, S. Giasson, S. Kaliaguine, Microporous Mesoporous Mater. 2001, 44–45, 241.
| Crossref | GoogleScholarGoogle Scholar |
[124] T. Sen, G. J. T. Tiddy, J. L. Casci, M. W. Anderson, Chem. Mater. 2004, 16, 2044.
| Crossref | GoogleScholarGoogle Scholar |
[125] C. M. A. Parlett, M. A. Isaacs, S. K. Beaumont, L. M. Bingham, N. S. Hondow, K. Wilson, A. F. Lee, Nat. Mater. 2016, 15, 178.
| Crossref | GoogleScholarGoogle Scholar |
[126] S. G. Wainwright, C. M. A. Parlett, R. A. Blackley, W. Zhou, A. F. Lee, K. Wilson, D. W. Bruce, Microporous Mesoporous Mater. 2013, 172, 112.
| Crossref | GoogleScholarGoogle Scholar |
[127] M. Ogawa, K. Ikeue, M. Anpo, Chem. Mater. 2001, 13, 2900.
| Crossref | GoogleScholarGoogle Scholar |
[128] T. Kamegawa, N. Suzuki, M. Che, H. Yamashita, Langmuir 2011, 27, 2873.
| Crossref | GoogleScholarGoogle Scholar | 21291289PubMed |
[129] J. Zhang, Y. Zhao, A. Li, H. Ye, Q. Shang, X. Shi, Y. Shen, J. Porous Mater. 2019, 26, 869.
| Crossref | GoogleScholarGoogle Scholar |
[130] J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010, 12, 296.
| Crossref | GoogleScholarGoogle Scholar |
[131] J. C. Manayil, A. Osatiashtiani, A. Mendoza, C. M. A. Parlett, M. A. Isaacs, L. J. Durndell, C. Michailof, E. Heracleous, A. Lappas, A. F. Lee, K. Wilson, ChemSusChem 2017, 10, 3506.
| Crossref | GoogleScholarGoogle Scholar | 28665029PubMed |
[132] J. Dhainaut, J.-P. Dacquin, A. F. Lee, K. Wilson, Green Chem. 2010, 12, 296.
| Crossref | GoogleScholarGoogle Scholar |
[133] J. J. Woodford, J.-P. Dacquin, K. Wilson, A. F. Lee, Energy Environ. Sci. 2012, 5, 6145.
| Crossref | GoogleScholarGoogle Scholar |
[134] (a) F. Li, Z. Wang, N. S. Ergang, C. A. Fyfe, A. Stein, Langmuir 2007, 23, 3996.
| Crossref | GoogleScholarGoogle Scholar | 17370995PubMed |
(b) E. M. Björk, F. Söderlind, M. Odén, Langmuir 2013, 29, 13551.
| Crossref | GoogleScholarGoogle Scholar |
[135] H. D. Zhang, X. H. Li, J. Chem. 2016, 2016, 5146573.
| Crossref | GoogleScholarGoogle Scholar |
[136] J. A. Hunns, M. Arroyo, A. F. Lee, J. M. Escola, D. Serrano, K. Wilson, Catal. Sci. Technol. 2016, 6, 2560.
| Crossref | GoogleScholarGoogle Scholar |
[137] C. Pirez, J.-M. Caderon, J.-P. Dacquin, A. F. Lee, K. Wilson, ACS Catal. 2012, 2, 1607.
| Crossref | GoogleScholarGoogle Scholar |
[138] (a) A. M. Liu, K. Hidajat, S. Kawi, D. Y. Zhao, Chem. Commun. 2000, 1145.
| Crossref | GoogleScholarGoogle Scholar |
(b) N. Hiyoshi, K. Yogo, T. Yashima, Microporous Mesoporous Mater. 2005, 84, 357.
| Crossref | GoogleScholarGoogle Scholar |
[139] H. H. P. Yiu, P. A. Wright, N. P. Botting, J. Mol. Catal., B Enzym. 2001, 15, 81.
| Crossref | GoogleScholarGoogle Scholar |
[140] C. Pirez, K. Wilson, A. F. Lee, Green Chem. 2014, 16, 197.
| Crossref | GoogleScholarGoogle Scholar |
[141] X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, J. Phys. Chem. B 1997, 101, 6525.
| Crossref | GoogleScholarGoogle Scholar |
[142] W. D. Bossaert, D. E. De Vos, W. M. Van Rhijn, J. Bullen, P. J. Grobet, P. A. Jacobs, J. Catal. 1999, 182, 156.
| Crossref | GoogleScholarGoogle Scholar |
[143] I. K. Mbaraka, B. H. Shanks, J. Catal. 2005, 229, 365.
| Crossref | GoogleScholarGoogle Scholar |
[144] C. Pirez, J.-C. Morin, J. C. Manayil, A. F. Lee, K. Wilson, Microporous Mesoporous Mater. 2018, 271, 196.
| Crossref | GoogleScholarGoogle Scholar |
[145] F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu, D. Zhao, J. Phys. Chem. B 2005, 109, 8723.
| Crossref | GoogleScholarGoogle Scholar | 16852033PubMed |
[146] J. P. Icenhower, P. M. Dove, Geochim. Cosmochim. Acta 2000, 64, 4193.
| Crossref | GoogleScholarGoogle Scholar |
[147] C. Pirez, A. F. Lee, J. C. Manayil, C. M. A. Parlett, K. Wilson, Green Chem. 2014, 16, 4506.
| Crossref | GoogleScholarGoogle Scholar |
[148] Z. Tai, M. A. Isaacs, C. M. A. Parlett, A. F. Lee, K. Wilson, Catal. Commun. 2017, 92, 56.
| Crossref | GoogleScholarGoogle Scholar |
[149] G. Morales, A. Osatiashtiani, B. Hernandez, J. Iglesias, J. A. Melero, M. Paniagua, D. R. Brown, M. Granollers, A. F. Lee, K. Wilson, Chem. Commun. 2014, 11742.
| Crossref | GoogleScholarGoogle Scholar |
[150] C. M. A. Parlett, L. J. Durndell, A. Machado, G. Cibin, D. W. Bruce, N. S. Hondow, K. Wilson, A. F. Lee, Catal. Today 2014, 229, 46.
| Crossref | GoogleScholarGoogle Scholar |
[151] M. A. Isaacs, B. Barbero, L. J. Durndell, A. C. Hilton, L. Olivi, C. M. A. Parlett, K. Wilson, A. F. Lee, Antibiotics 2018, 7, 55.
| Crossref | GoogleScholarGoogle Scholar |
[152] J. J. Creasey, C. M. A. Parlett, J. C. Manayil, M. A. Isaacs, K. Wilson, A. F. Lee, Green Chem. 2015, 17, 2398.
| Crossref | GoogleScholarGoogle Scholar |
[153] G. Busca, Chem. Rev. 2007, 107, 5366.
| Crossref | GoogleScholarGoogle Scholar | 17973436PubMed |
[154] W. Piskorz, J. Gryboś, F. Zasada, P. Zapała, S. Cristol, J.-F. Paul, Z. Sojka, J. Phys. Chem. C 2012, 116, 19307.
| Crossref | GoogleScholarGoogle Scholar |
[155] (a) M. A. Aramendía, V. Boráu, C. Jiménez, J. M. Marinas, A. Marinas, A. Porras, F. J. Urbano, J. Catal. 1999, 183, 240.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Tanabe, T. Yamaguchi, Catal. Today 1994, 20, 185.
| Crossref | GoogleScholarGoogle Scholar |
[156] T. Chraska, A. H. King, C. C. Berndt, Mater. Sci. Eng. A 2000, 286, 169.
| Crossref | GoogleScholarGoogle Scholar |
[157] K. De Keukeleere, J. De Roo, P. Lommens, J. C. Martins, P. Van Der Voort, I. Van Driessche, Inorg. Chem. 2015, 54, 3469.
| Crossref | GoogleScholarGoogle Scholar | 25751155PubMed |
[158] W. Piskorz, J. Gryboś, F. Zasada, S. Cristol, J.-F. Paul, A. Adamski, Z. Sojka, J. Phys. Chem. C 2011, 115, 24274.
| Crossref | GoogleScholarGoogle Scholar |
[159] H. Jahangiri, A. Osatiashtiani, J. A. Bennett, M. A. Isaacs, S. Gu, A. F. Lee, K. Wilson, Catal. Sci. Technol. 2018, 8, 1134.
| Crossref | GoogleScholarGoogle Scholar |
[160] X. Qi, M. Watanabe, T. M. Aida, R. L. Smith, Catal. Commun. 2008, 9, 2244.
| Crossref | GoogleScholarGoogle Scholar |
[161] A. Osatiashtiani, A. F. Lee, D. R. Brown, J. A. Melero, G. Morales, K. Wilson, Catal. Sci. Technol. 2014, 4, 333.
| Crossref | GoogleScholarGoogle Scholar |
[162] X. H. Qi, M. Watanabe, T. M. Aida, R. L. Smith, Catal. Commun. 2009, 10, 1771.
| Crossref | GoogleScholarGoogle Scholar |
[163] I. J. Dijs, J. W. Geus, L. W. Jenneskens, J. Phys. Chem. B 2003, 107, 13403.
| Crossref | GoogleScholarGoogle Scholar |
[164] A. Osatiashtiani, L. J. Durndell, J. C. Manayil, A. F. Lee, K. Wilson, Green Chem. 2016, 18, 5529.
| Crossref | GoogleScholarGoogle Scholar |
[165] A. Stanislaus, L. M. Yeddanapalli, Can. J. Chem. 1972, 50, 61.
| Crossref | GoogleScholarGoogle Scholar |
[166] M. A. Ecormier, K. Wilson, A. F. Lee, J. Catal. 2003, 215, 57.
| Crossref | GoogleScholarGoogle Scholar |
[167] A. I. M. Rabee, L. J. Durndell, N. E. Fouad, L. Frattini, M. A. Isaacs, A. F. Lee, G. A. H. Mekhemer, V. C. dos Santos, K. Wilson, M. I. Zaki, Mol. Catal. 2018, 458, 206.
| Crossref | GoogleScholarGoogle Scholar |
[168] S. Crossley, J. Faria, M. Shen, D. E. Resasco, Interface Sci. 2010, 327, 68.
[169] M. P. Ruiz, J. Faria, M. Shen, S. Drexler, T. Prasomsri, D. E. Resasco, ChemSusChem 2011, 4, 964.
| Crossref | GoogleScholarGoogle Scholar | 21751419PubMed |
[170] R. Gounder, Catal. Sci. Technol. 2014, 4, 2877.
| Crossref | GoogleScholarGoogle Scholar |
[171] P. A. Zapata, Y. Huang, M. A. Gonzalez-Borja, D. E. Resasco, J. Catal. 2013, 308, 82.
| Crossref | GoogleScholarGoogle Scholar |
[172] I. Delidovich, R. Palkovits, Catal. Sci. Technol. 2014, 4, 4322.
| Crossref | GoogleScholarGoogle Scholar |
[173] (a) F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 2006, 45, 3216.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffmann, K. Rurack, Angew. Chem. Int. Ed. 2006, 45, 5924.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Whitnall, T. Asefa, G. A. Ozin, Adv. Funct. Mater. 2005, 15, 1696.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Sayari, S. Hamoudi, Chem. Mater. 2001, 13, 3151.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Xia, W. Wang, R. Mokaya, J. Am. Chem. Soc. 2005, 127, 790.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Stein, B. J. Melde, R. C. Schroden, Adv. Mater. 2000, 12, 1403.
| Crossref | GoogleScholarGoogle Scholar |
[174] J. C. Manayil, V. C. dos Santos, F. C. Jentoft, M. Granollers Mesa, A. F. Lee, K. Wilson, ChemCatChem 2017, 9, 2231.
| Crossref | GoogleScholarGoogle Scholar |
[175] K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Angew. Chem. Int. Ed. 2007, 46, 7625.
| Crossref | GoogleScholarGoogle Scholar |
[176] (a) S. S. Park, M. Santha Moorthy, C.-S. Ha, NPG Asia Mater. 2014, 6, e96.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G. A. Ozin, Acc. Chem. Res. 2005, 38, 305.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, F. J. Romero-Salguero, Chem. Soc. Rev. 2013, 42, 3913.
| Crossref | GoogleScholarGoogle Scholar |
[177] (a) V. Gascón, I. Díaz, R. M. Blanco, C. Márquez-Álvarez, RSC Adv. 2014, 4, 34356.
| Crossref | GoogleScholarGoogle Scholar |
(b) Q. Yang, J. Liu, J. Yang, L. Zhang, Z. Feng, J. Zhang, C. Li, Microporous Mesoporous Mater. 2005, 77, 257.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Schäfgen, O. D. Malter, E. Kaigarula, A. Schüßler, S. Ernst, W. R. Thiel, Microporous Mesoporous Mater. 2017, 251, 122.
| Crossref | GoogleScholarGoogle Scholar |
[178] J. C. Manayil, A. F. Lee, K. Wilson, Molecules 2019, 24, 239.
| Crossref | GoogleScholarGoogle Scholar |
[179] (a) C. Pirez, A. F. Lee, C. Jones, K. Wilson, Catal. Today 2014, 234, 167.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Pirez, M. T. Reche, A. F. Lee, J. C. Manayil, V. C. dos-Santos, K. Wilson, Catal. Lett. 2015, 145, 1483.
| Crossref | GoogleScholarGoogle Scholar |
[180] R. Sánchez-Vázquez, C. Pirez, J. Iglesias, K. Wilson, A. F. Lee, J. A. Melero, ChemCatChem 2013, 5, 994.
| Crossref | GoogleScholarGoogle Scholar |
[181] S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. Luque de Castro, G. Dorado, M. P. Dorado, Energy Fuels 2009, 23, 2325.
| Crossref | GoogleScholarGoogle Scholar |
[182] P. Azadi, O. R. Inderwildi, R. Farnood, D. A. King, Renew. Sustain. Energy Rev. 2013, 21, 506.
| Crossref | GoogleScholarGoogle Scholar |
[183] Forest Wood Products Australia, Opportunities for Australian Forest Growers from the Development of a Biorefinery and/or Biomaterials Industry within Australia 2013. Available at: https://www.fwpa.com.au/images/resources/FWPA_OptionsPaper_final_0.pdf (accessed 22 May 2020).
[184] Energy & Resources Knowledge Hub, Bio-Renewables to Revolutionise National Energy Production 2019. Available at: https://www.energyinnovation.net.au/article/hunter-bio-renewables-hub-aims-to-revolutionise-national-energy-production (accessed 22 May 2020).
[185] S. Corrado, S. Sala, in Designing Sustainable Technologies, Products and Policies (Eds E. Benetto, K. Gericke, M. Guiton) 2018, pp. 49–59 (Springer: Berlin).
[186] Q. Dang, W. Hu, M. Rover, R. C. Brown, M. M. Wright, Biofuels Bioprod. Biorefin. 2016, 10, 790.
| Crossref | GoogleScholarGoogle Scholar |
[187] F. K. Kazi, A. D. Patel, J. C. Serrano-Ruiz, J. A. Dumesic, R. P. Anex, Chem. Eng. J. 2011, 169, 329.
| Crossref | GoogleScholarGoogle Scholar |
[188] S. H. Krishna, K. Huang, K. J. Barnett, J. He, C. T. Maravelias, J. A. Dumesic, G. W. Huber, M. De Bruyn, B. M. Weckhuysen, AIChE J. 2018, 64, 1910.
| Crossref | GoogleScholarGoogle Scholar |
[189] H. Olcay, R. Malina, A. A. Upadhye, J. I. Hileman, G. W. Huber, S. R. H. Barrett, Energy Environ. Sci. 2018, 11, 2085.
| Crossref | GoogleScholarGoogle Scholar |
[190] H. Mao, S. Peng, H. Yu, J. Chen, S. Zhao, F. Huo, J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 5847.
| Crossref | GoogleScholarGoogle Scholar |
[191] S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126.
| Crossref | GoogleScholarGoogle Scholar | 19029893PubMed |
[192] S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair, J. W. Elam, Nano Lett. 2010, 10, 3047.
| Crossref | GoogleScholarGoogle Scholar | 20698618PubMed |
[193] (a) J. A. Libera, J. W. Elam, M. J. Pellin, Thin Solid Films 2008, 516, 6158.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. M. George, Chem. Rev. 2010, 110, 111.
| Crossref | GoogleScholarGoogle Scholar |
[194] X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
| Crossref | GoogleScholarGoogle Scholar | 23815772PubMed |
[195] M. J. Climent, A. Corma, S. Iborra, M. J. Sabater, ACS Catal. 2014, 4, 870.
| Crossref | GoogleScholarGoogle Scholar |
[196] K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int. Ed. 2006, 45, 7134.
| Crossref | GoogleScholarGoogle Scholar |
[197] D. Y. Murzin, R. Leino, Chem. Eng. Res. Des. 2008, 86, 1002.
| Crossref | GoogleScholarGoogle Scholar |