Nanomaterials at Interfaces between Immiscible Electrolyte Solutions
Ji Zhao A , Chunbo Jiang A and Yang Liu A BA College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B Corresponding author. Email: yang.liu11@jcu.edu.au
Ji Zhao obtained her bachelor’s degree in chemical engineering and technology from Henan Polytechnic University, China, in 2016 and master’s degree in applied chemistry from Henan Polytechnic University, China, in 2019. Currently, she is a Ph.D. candidate under the supervision of Dr Yang Liu at James Cook University, Australia. Her research is focused on the electrochemistry at nanoscale liquid-liquid interfaces. |
Chunbo Jiang completed his Ph.D. at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2012. After that, he worked as a project officer at Nanyang Technological University, Singapore. From 2014 to 2016, he worked as a visiting Research Associate at Curtin University, Australia, where his research interests included the development of composite membranes for fuel cell applications. Since 2018, he has been working as an Adjunct Lecturer at James Cook University, Australia. His current research interests are focused on anion exchange membrane fuel cells and innovative sensing devices for environmental applications. |
Yang Liu obtained her Ph.D. (Chemistry) from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2011. She held postdoctoral positions at Nanyang Technological University, Singapore (2011 to 2013) and Curtin University, Australia (2013–2016). From 2016 to 2018, she worked as a Chemist and Research Officer at ChemCentre, Western Australian Government. In 2018, she was appointed as Lecturer of Chemistry at James Cook University to commence her independent career. Her current research interests are primarily in the exploration of innovative analytical technologies for environmental and biological applications, including development of chemical sensing devices and analytical utility of electrochemistry at nanoscale liquid-liquid interfaces. |
Australian Journal of Chemistry 73(10) 861-867 https://doi.org/10.1071/CH19532
Submitted: 18 October 2019 Accepted: 11 February 2020 Published: 22 May 2020
Abstract
The liquid–liquid interface between two immiscible electrolyte solutions (ITIES) offers a unique platform for the formation of nanomaterials, which exhibit redox electrocatalytic activities and enhanced electroanalytical performances. This article reviews the strategies for modification of the ITIES with different types of nanomaterials. Electrochemical applications of the nanomaterial-modified ITIES in electrocatalysis and electroanalysis are also discussed.
References
[1] L. Poltorak, A. Gamero-Quijano, G. Herzog, A. Walcarius, Appl. Mater. Today 2017, 9, 533.| Crossref | GoogleScholarGoogle Scholar |
[2] S. G. Booth, R. A. W. Dryfe, J. Phys. Chem. C 2015, 119, 23295.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Shi, T. P. Russell, Adv. Mater. 2018, 30, 1800714.
| Crossref | GoogleScholarGoogle Scholar | 30035834PubMed |
[4] Z. Samec, V. Mareček, J. Weber, J. Electroanal. Chem. Interfacial Electrochem. 1979, 100, 841.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Guastalla, Nature 1970, 227, 485.
| Crossref | GoogleScholarGoogle Scholar | 16058014PubMed |
[6] D. W. M. Arrigan, E. A. de Eulate, Y. Liu, Aust. J. Chem. 2016, 69, 1016.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Herzog, Analyst 2015, 140, 3888.
| Crossref | GoogleScholarGoogle Scholar | 26000343PubMed |
[8] S. Amemiya, J. Kim, A. Izadyar, B. Kabagambe, M. Shen, R. Ishimatsu, Electrochim. Acta 2013, 110, 836.
| Crossref | GoogleScholarGoogle Scholar |
[9] Z. Samec, Pure Appl. Chem. 2004, 76, 2147.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Liu, Q. Li, Y. Shao, Chem. Soc. Rev. 2011, 40, 18.
[11] H. H. Girault, in Electroanalytical Chemistry: A Series of Advances (Eds A. J. Bard, C. G. Zoski) 2010, Vol. 23, pp. 1–104 (Dekker: New York, NY).
[12] D. W. M. Arrigan, G. Herzog, Curr. Opin. Electrochem. 2017, 1, 66.
| Crossref | GoogleScholarGoogle Scholar |
[13] D. W. Arrigan, Y. Liu, Annu. Rev. Anal. Chem. 2016, 9, 145.
| Crossref | GoogleScholarGoogle Scholar |
[14] D. W. M. Arrigan, E. Alvarez de Eulate, Y. Liu, Aust. J. Chem. 2016, 69, 1016.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. D. Scanlon, E. Smirnov, T. J. Stockmann, P. Peljo, Chem. Rev. 2018, 118, 3722.
| Crossref | GoogleScholarGoogle Scholar | 29381343PubMed |
[16] S. Yamamoto, H. Nagatani, H. Imura, Langmuir 2017, 33, 10134.
| Crossref | GoogleScholarGoogle Scholar | 28578576PubMed |
[17] A. F. Molina-Osorio, D. Cheung, C. O’Dwyer, A. A. Stewart, M. Dossot, G. Herzog, M. D. Scanlon, ChemRxiv 2019,
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Rivier, T. J. Stockmann, M. A. Méndez, M. D. Scanlon, P. Peljo, M. Opallo, H. H. Girault, J. Phys. Chem. C 2015, 119, 25761.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. J. Olaya, D. Schaming, P. F. Brevet, H. Nagatani, T. Zimmermann, J. Vanicek, H. J. Xu, C. P. Gros, J. M. Barbe, H. H. Girault, J. Am. Chem. Soc. 2012, 134, 498.
| Crossref | GoogleScholarGoogle Scholar | 22107335PubMed |
[20] P. Peljo, M. D. Scanlon, A. J. Olaya, L. Rivier, E. Srnirnov, H. H. Girault, J. Phys. Chem. Lett. 2017, 8, 3564.
| Crossref | GoogleScholarGoogle Scholar | 28707892PubMed |
[21] R. A. W. Dryfe, A. Uehara, S. G. Booth, Chem. Rec. 2014, 14, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. Smirnov, P. Peljo, M. D. Scanlon, H. H. Girault, ACS Nano 2015, 9, 6565.
| Crossref | GoogleScholarGoogle Scholar | 26039934PubMed |
[23] Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, A. A. Kornyshev, Nat. Mater. 2017, 16, 1127.
| Crossref | GoogleScholarGoogle Scholar | 28892055PubMed |
[24] S. Rastgar, G. Wittstock, J. Phys. Chem. C 2018, 122, 12963.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Rastgar, G. Wittstock, J. Phys. Chem. C 2017, 121, 25941.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. S. Riva, A. V. Juárez, S. E. Urreta, L. M. Yudi, Electrochim. Acta 2019, 298, 379.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. Jensen, D. J. Fermín, J. E. Moser, H. H. Girault, J. Phys. Chem. B 2002, 106, 10908.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. J. Fermín, H. Jensen, J. E. Moser, H. H. Girault, ChemPhysChem 2003, 4, 85.
| Crossref | GoogleScholarGoogle Scholar | 12596470PubMed |
[29] B. Su, D. J. Fermín, J.-P. Abid, N. Eugster, H. H. Girault, J. Electroanal. Chem. 2005, 583, 241.
| Crossref | GoogleScholarGoogle Scholar |
[30] M. C. Collins, M. Hebrant, G. Herzog, Electrochim. Acta 2018, 282, 155.
| Crossref | GoogleScholarGoogle Scholar |
[31] M. Platt, R. A. W. Dryfe, E. P. L. Roberts, Chem. Commun. 2002, 2324.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. A. W. Dryfe, A. Uehara, S. G. Booth, Chem. Rec. 2014, 14, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[33] A. N. J. Rodgers, S. G. Booth, R. A. W. Dryfe, Electrochem. Commun. 2014, 47, 17.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. Platt, R. A. W. Dryfe, E. P. L. Roberts, Electrochim. Acta 2003, 48, 3037.
| Crossref | GoogleScholarGoogle Scholar |
[35] D. Izquierdo, A. Martinez, A. Heras, J. Lopez-Palacios, V. Ruiz, R. A. W. Dryfe, A. Colina, Anal. Chem. 2012, 84, 5723.
| Crossref | GoogleScholarGoogle Scholar | 22702449PubMed |
[36] A. Trojánek, J. Langmaier, Z. Samec, J. Electroanal. Chem. 2007, 599, 160.
| Crossref | GoogleScholarGoogle Scholar |
[37] X. Zhu, Y. Qiao, X. Zhang, S. Zhang, X. Yin, J. Gu, Y. Chen, Z. Zhu, M. Li, Y. Shao, Anal. Chem. 2014, 86, 7001.
| Crossref | GoogleScholarGoogle Scholar | 24958198PubMed |
[38] Y. Cheng, D. J. Schiffrin, J. Chem. Soc., Faraday Trans. 1996, 92, 3865.
| Crossref | GoogleScholarGoogle Scholar |
[39] K. Luo, R. A. W. Dryfe, New J. Chem. 2009, 33, 157.
| Crossref | GoogleScholarGoogle Scholar |
[40] Y. Grunder, Q. M. Ramasse, R. A. W. Dryfe, Phys. Chem. Chem. Phys. 2015, 17, 5565.
| Crossref | GoogleScholarGoogle Scholar | 25626491PubMed |
[41] Y. Zhang, N. Nishi, T. Sakka, ACS Appl. Mater. Interfaces 2019, 11, 23731.
| Crossref | GoogleScholarGoogle Scholar | 31180639PubMed |
[42] S. Takagi, N. Nishi, T. Sakka, Chem. Lett. 2019, 48, 589.
| Crossref | GoogleScholarGoogle Scholar |
[43] N. Nishi, Y. Ikeda, T. Sakka, J. Electroanal. Chem. 2018, 817, 210.
| Crossref | GoogleScholarGoogle Scholar |
[44] Y. Zhang, N. Nishi, T. Sakka, Electrochim. Acta 2019, 325, 134919.
| Crossref | GoogleScholarGoogle Scholar |
[45] Y. Zhang, N. Nishi, K.-i. Amano, T. Sakka, Electrochim. Acta 2018, 282, 886.
| Crossref | GoogleScholarGoogle Scholar |
[46] Y. Zhang, N. Nishi, T. Sakka, ACS Appl. Mater. Interfaces 2019, 11, 23731.
| Crossref | GoogleScholarGoogle Scholar | 31180639PubMed |
[47] C. W. Shi, K. A. Owusu, X. M. Xu, T. Zhu, G. B. Zhang, W. Yang, L. Q. Mai, Small 2019, 15, 1902348.
| Crossref | GoogleScholarGoogle Scholar |
[48] Dhanjai, A. Sinha, X. B. Lu, L. X. Wu, D. Q. Tan, Y. Li, J. P. Chen, R. Jain, TrAC Trends Anal. Chem. 2018, 98, 174.
| Crossref | GoogleScholarGoogle Scholar |
[49] P. S. Toth, Q. M. Ramasse, M. Velický, R. A. W. Dryfe, Chem. Sci. 2015, 6, 1316.
| Crossref | GoogleScholarGoogle Scholar | 29560218PubMed |
[50] A. N. J. Rodgers, A. K. Rabiu, P. S. Toth, R. W. Adams, R. A. W. Dryfe, Electrochim. Acta 2019, 308, 307.
| Crossref | GoogleScholarGoogle Scholar |
[51] P. S. Toth, A. K. Rabiu, R. A. W. Dryfe, Electrochem. Commun. 2015, 60, 153.
| Crossref | GoogleScholarGoogle Scholar |
[52] P. S. Toth, M. Velický, Q. M. Ramasse, D. M. Kepaptsoglou, R. A. W. Dryfe, Adv. Funct. Mater. 2015, 25, 2899.
| Crossref | GoogleScholarGoogle Scholar |
[53] P. S. Toth, M. Velicky, M. A. Bissett, T. J. Slater, N. Savjani, A. K. Rabiu, A. M. Rakowski, J. R. Brent, S. J. Haigh, P. O’Brien, R. A. Dryfe, Adv. Mater. 2016, 28, 8256.
| Crossref | GoogleScholarGoogle Scholar | 27461734PubMed |
[54] X. J. Bian, M. D. Scanlon, S. N. Wang, L. Liao, Y. Tang, B. H. Liu, H. H. Girault, Chem. Sci. 2013, 4, 3432.
| Crossref | GoogleScholarGoogle Scholar |
[55] S. Senthilkumar, R. A. W. Dryfe, S. Saraswathi, Langmuir 2007, 23, 3455.
| Crossref | GoogleScholarGoogle Scholar | 17279783PubMed |
[56] B. Kralj, R. A. W. Dryfe, Phys. Chem. Chem. Phys. 2001, 3, 9.
[57] R. A. W. Dryfe, B. Kralj, Electrochem. Commun. 1999, 1, 128.
| Crossref | GoogleScholarGoogle Scholar |
[58] M. Platt, R. A. W. Dryfe, E. P. L. Roberts, Langmuir 2003, 19, 8019.
| Crossref | GoogleScholarGoogle Scholar |
[59] X. H. Jiang, K. Gao, D. P. Hu, H. H. Wang, S. J. Bian, Y. Chen, Analyst 2015, 140, 2823.
| Crossref | GoogleScholarGoogle Scholar |
[60] X. Huang, L. Xie, X. Lin, B. Su, Anal. Chem. 2016, 88, 6563.
| Crossref | GoogleScholarGoogle Scholar | 27240714PubMed |
[61] L. S. Q. Xie, X. Huang, X. Y. Lin, B. Su, J. Electroanal. Chem. 2017, 784, 62.
| Crossref | GoogleScholarGoogle Scholar |
[62] M. D. Scanlon, J. Strutwolf, A. Blake, D. Iacopino, A. J. Quinn, D. W. M. Arrigan, Anal. Chem. 2010, 82, 6115.
| Crossref | GoogleScholarGoogle Scholar | 20552973PubMed |
[63] M. D. Scanlon, D. W. M. Arrigan, Electroanalysis 2011, 23, 1023.
| Crossref | GoogleScholarGoogle Scholar |
[64] M. Rimboud, R. D. Hart, T. Becker, D. W. M. Arrigan, Analyst 2011, 136, 4674.
| Crossref | GoogleScholarGoogle Scholar | 21858328PubMed |
[65] Y. Liu, J. Strutwolf, D. W. M. Arrigan, Anal. Chem. 2015, 87, 4487.
| Crossref | GoogleScholarGoogle Scholar | 25815423PubMed |
[66] M. Sairi, N. Chen-Tan, G. Neusser, C. Kranz, D. W. M. Arrigan, ChemElectroChem 2015, 2, 98.
| Crossref | GoogleScholarGoogle Scholar |
[67] Y. Liu, M. Sairi, G. Neusser, C. Kranz, D. W. Arrigan, Anal. Chem. 2015, 87, 5486.
| Crossref | GoogleScholarGoogle Scholar | 25962586PubMed |
[68] Y. Liu, A. Holzinger, P. Knittel, L. Poltorak, A. Gamero-Quijano, W. D. Rickard, A. Walcarius, G. Herzog, C. Kranz, D. W. Arrigan, Anal. Chem. 2016, 88, 6689.
| Crossref | GoogleScholarGoogle Scholar | 27264360PubMed |
[69] L. Poltorak, G. Herzog, A. Walcarius, Electrochem. Commun. 2013, 37, 76.
| Crossref | GoogleScholarGoogle Scholar |
[70] L. Poltorak, G. Herzog, A. Walcarius, Langmuir 2014, 30, 11453.
| Crossref | GoogleScholarGoogle Scholar | 25229369PubMed |
[71] L. Poltorak, K. Morakchi, G. Herzog, A. Walcarius, Electrochim. Acta 2015, 179, 9.
| Crossref | GoogleScholarGoogle Scholar |
[72] L. Poltorak, M. Dossot, G. Herzog, A. Walcarius, Phys. Chem. Chem. Phys. 2014, 16, 26955.
| Crossref | GoogleScholarGoogle Scholar | 25377062PubMed |
[73] A. Holzinger, G. Neusser, B. J. J. Austen, A. Gamero-Quijano, G. Herzog, D. W. M. Arrigan, A. Ziegler, P. Walther, C. Kranz, Faraday Discuss. 2018, 210, 113.
| Crossref | GoogleScholarGoogle Scholar | 29974089PubMed |
[74] H. Y. Jin, C. X. Guo, X. Liu, J. L. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337.
| Crossref | GoogleScholarGoogle Scholar |
[75] P. Ge, M. D. Scanlon, P. Peljo, X. Bian, H. Vubrel, A. O’Neill, J. N. Coleman, M. Cantoni, X. Hu, K. Kontturi, B. Liu, H. H. Girault, Chem. Commun. 2012, 48, 6484.
| Crossref | GoogleScholarGoogle Scholar |
[76] W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, R. A. W. Dryfe, ChemNanoMat 2017, 3, 428.
| Crossref | GoogleScholarGoogle Scholar |
[77] J. J. Nieminen, I. Hatay, P. Ge, M. A. Méndez, L. Murtomäki, H. H. Girault, Chem. Commun. 2011, 47, 5548.
| Crossref | GoogleScholarGoogle Scholar |
[78] Y. Gründer, M. D. Fabian, S. G. Booth, D. Plana, D. J. Fermín, P. I. Hill, R. A. W. Dryfe, Electrochim. Acta 2013, 110, 809.
| Crossref | GoogleScholarGoogle Scholar |
[79] M. Sairi, J. Strutwolf, R. A. Mitchell, D. S. Silvester, D. W. M. Arrigan, Electrochim. Acta 2013, 101, 177.
| Crossref | GoogleScholarGoogle Scholar |
[80] X. Huang, L. S. Q. Xie, X. Y. Lin, B. Su, Anal. Chem. 2016, 88, 6563.
| Crossref | GoogleScholarGoogle Scholar | 27240714PubMed |