Low Temperature Synthesis of TiO2 Nanoparticles with Tuneable Phase Composition and their Photocatalytic Activity
Jeannie Z. Y. Tan A B D , Natalita M. Nursam A B E , Fang Xia B C , Xingdong Wang B and Rachel A. Caruso A B F GA Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Vic. 3168, Australia.
C Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
D Current address: Research Centre for Carbon Solutions (RCCS), Heriot-Watt University, Edinburgh, EH14 4AS, UK.
E Current address: Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI building 20 level 4, Bandung 40135 Indonesia.
F Current address: Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Vic. 3000, Australia.
G Corresponding author. Email: rachel.caruso@rmit.edu.au
Australian Journal of Chemistry 73(10) 1020-1026 https://doi.org/10.1071/CH19531
Submitted: 18 October 2019 Accepted: 28 February 2020 Published: 16 June 2020
Abstract
The effect of TiCl4 concentration on the phase transformations among the TiO2 polymorphs was studied using in situ powder X-ray diffraction and Raman spectroscopy. Interestingly, the primarily amorphous TiO2 solid obtained after thermolysis of TiCl4 at 80°C contained some anatase and rutile phases for low (≤18 mM) and high (≥27 mM) TiCl4 concentrations, respectively. These samples produced anatase or rutile dominated samples of TiO2 after hydrothermal treatment. The tricrystalline TiO2 sample fabricated with 18 mM TiCl4 solution showed the highest photocatalytic activity for the degradation of phenol, as a result of high surface area.
References
[1] X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.| Crossref | GoogleScholarGoogle Scholar | 17590053PubMed |
[2] S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanopart. Res. 2004, 6, 193.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, J. Phys. Chem. C 2007, 111, 2709.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Gopal, W. J. Moberly Chan, L. C. De Jonghe, J. Mater. Sci. 1997, 32, 6001.
| Crossref | GoogleScholarGoogle Scholar |
[5] X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, F. Pedraza, Int. J. Hydrogen Energy 2001, 26, 1279.
| Crossref | GoogleScholarGoogle Scholar |
[6] T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, J. Nanomater. 2011, 2011, 267415.
[7] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Saif, S. M. K. Aboul-Fotouh, S. A. El-Molla, M. M. Ibrahim, L. F. M. Ismail, J. Nanopart. Res. 2012, 14, 1227.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. S. Watson, D. Beydoun, J. A. Scott, R. Amal, Chem. Eng. J. 2003, 95, 213.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Yan, F. Chen, J. Zhang, M. Anpo, J. Phys. Chem. B 2005, 109, 8673.
| Crossref | GoogleScholarGoogle Scholar | 16852027PubMed |
[11] F. Cai, Y. Tang, H. Shen, C. Wang, A. Ren, L. Xiao, W. Gu, W. Shi, CrystEngComm 2015, 17, 1086.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer, J. Phys. Chem. B 2003, 107, 4545.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Zhao, L. Liu, J. M. Andino, Y. Li, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 8209.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Yu, W. Liu, H. Yu, Cryst. Growth Des. 2008, 8, 930.
| Crossref | GoogleScholarGoogle Scholar |
[15] W. Zheng, X. Liu, Z. Yan, L. Zhu, ACS Nano 2009, 3, 115.
| Crossref | GoogleScholarGoogle Scholar | 19206257PubMed |
[16] L. Cao, D. Chen, W. Li, R. A. Caruso, ACS Appl. Mater. Interfaces 2014, 6, 13129.
| Crossref | GoogleScholarGoogle Scholar | 25090241PubMed |
[17] J.-L. Mi, C. Clausen, M. Bremholm, N. Lock, K. M. Ø. Jensen, M. Christensen, B. B. Iversen, Cryst. Growth Des. 2012, 12, 6092.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Zheng, E. Shi, S. Cui, W. Li, X. Hu, J. Am. Ceram. Soc. 2000, 83, 2634.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A 2003, 244, 383.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Chen, K. Wang, L. Lou, J. Photochem. Photobiol. Chem. 2004, 163, 281.
| Crossref | GoogleScholarGoogle Scholar |
[21] Z. Wang, D. Xia, G. Chen, T. Yang, Y. Chen, Mater. Chem. Phys. 2008, 111, 313.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. Kominami, M. Kohno, Y. Kera, J. Mater. Chem. 2000, 10, 1151.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, J.-P. Jolivet, J. Mater. Chem. 2001, 11, 1116.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 366.
| Crossref | GoogleScholarGoogle Scholar |
[25] B. Ohtani, Y. Ogawa, S.-i. Nishimoto, J. Phys. Chem. B 1997, 101, 3746.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Kumar, A. R. Madaria, C. Zhou, J. Phys. Chem. C 2010, 114, 7787.
| Crossref | GoogleScholarGoogle Scholar |
[27] R. Boppella, P. Basak, S. V. Manorama, ACS Appl. Mater. Interfaces 2012, 4, 1239.
| Crossref | GoogleScholarGoogle Scholar | 22339883PubMed |
[28] P. D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 2003, 125, 14539.
| Crossref | GoogleScholarGoogle Scholar | 14624603PubMed |
[29] H. Zhang, J. F. Banfield, J. Mater. Chem. 1998, 8, 2073.
| Crossref | GoogleScholarGoogle Scholar |
[30] H. Zhang, B. Chen, J. F. Banfield, G. A. Waychunas, Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 214106.
| Crossref | GoogleScholarGoogle Scholar |
[31] V. Petkov, G. Holzhüter, U. Tröge, T. Gerber, B. Himmel, J. Non-Cryst. Solids 1998, 231, 17.
| Crossref | GoogleScholarGoogle Scholar |
[32] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss, G. Oskam, Nanotechnology 2008, 19, 145605.
| Crossref | GoogleScholarGoogle Scholar | 21817764PubMed |
[33] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, in Handbook of Heterogeneous Catalysis (Eds G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp) 2008, Vol. 3, pp. 1217–1230 (Wiley-VCH: Weinheim).
[34] A. Di Paola, M. Bellardita, L. Palmisano, Catalysts 2013, 3, 36.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. Cao, B. Luo, H. Lin, S. Chen, J. Hazard. Mater. 2011, 190, 700.
| Crossref | GoogleScholarGoogle Scholar | 21561712PubMed |
[36] T. A. Gad-Allah, S. Kato, S. Satokawa, T. Kojima, Solid State Sci. 2007, 9, 737.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Liu, J. Wu, X. Liu, R. Jiang, J. Mol. Catal. Chem. 2010, 332, 84.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, N. Ohashi, Chem. Phys. Lett. 2005, 401, 579.
| Crossref | GoogleScholarGoogle Scholar |
[39] H. Rietveld, J. Appl. Cryst. 1969, 2, 65.
| Crossref | GoogleScholarGoogle Scholar |
[40] R. J. Hill, C. J. Howard, J. Appl. Cryst. 1987, 20, 467.
| Crossref | GoogleScholarGoogle Scholar |
[41] F. Xia, D. Chen, N. V. Y. Scarlett, I. C. Madsen, D. Lau, M. Leoni, J. Ilavsky, H. E. A. Brand, R. A. Caruso, Chem. Mater. 2014, 26, 4563.
| Crossref | GoogleScholarGoogle Scholar |
[42] W. Li, F. Xia, J. Qu, P. Li, D. Chen, Z. Chen, Y. Yu, Y. Lu, R. Caruso, W. Song, Nano Res. 2014, 7, 903.
| Crossref | GoogleScholarGoogle Scholar |
[43] P. Norby, J. Am. Chem. Soc. 1997, 119, 5215.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. Landers, G. Y. Gor, A. V. Neimark, Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3.
| Crossref | GoogleScholarGoogle Scholar |
[45] H. Kisch, S. Sakthivel, M. Janczarek, D. Mitoraj, J. Phys. Chem. C 2007, 111, 11445.
| Crossref | GoogleScholarGoogle Scholar |
[46] N. M. Nursam, X Wang, R. A. Caruso, J. Mater. Chem. A 2015, 3, 24557.