Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Characterisation, and Biological Activity of the Ruthenium Complexes of the N4-Tetradentate (N4-TL), 1,6-Di(2′-pyridyl)-2,5-dimethyl-2,5-diazahexane (picenMe2)

Aleksandra Bjelosevic A , Jennette Sakoff B , Jayne Gilbert B , Yingjie Zhang C , Christopher Gordon A and Janice R. Aldrich-Wright https://orcid.org/0000-0002-6943-6908 A C E
+ Author Affiliations
- Author Affiliations

A School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.

B Calvary Mater Newcastle, Waratah, NSW 2298, Australia.

C Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia.

D School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.

E Corresponding author. Email: J.Aldrich-Wright@westernsydney.edu.au

Australian Journal of Chemistry 73(10) 956-968 https://doi.org/10.1071/CH19528
Submitted: 17 October 2019  Accepted: 28 November 2019   Published: 23 April 2020

Abstract

A series of complexes of the type rac-[Ru(N4-TL)(PL)]2+ (where N4-TL = 1,6-di(2′-pyridyl)-2,5-dimethyl-2,5-diazahexane (picenMe2, N4-TL-2) and PL = 1,10-phenanthroline (phen, Ru-2), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, Ru-3), 7,8-dimethyl-dipyrido[3,2-a:2′,3′-c]phenazine (dppzMe2, Ru-4), 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBz, Ru-5), 2-(p-tolyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzMe, Ru-6), and 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzNO2, Ru-7), were synthesised. All structures were confirmed using NMR, electrospray ionisation mass spectrometry (ESI-MS), high-performance liquid chromatography (HPLC), and UV analysis and for four complexes X-ray crystallography. The in vitro cytotoxicity assays revealed that Ru-6 was 5, 10, and 40-fold more potent than oxaliplatin, cisplatin, and carboplatin, respectively.


References

[1]  H. A. Goodwin, F. Lions, J. Am. Chem. Soc. 1960, 82, 5013.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. R. Aldrich-Wright, R. S. Vagg, P. A. Williams, Coord. Chem. Rev. 1997, 166, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  P. D. Knight, P. Scott, Coord. Chem. Rev. 2003, 242, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. R. Fenton, F. S. Stephens, R. S. Vagg, P. A. Williams, Inorg. Chim. Acta 1991, 182, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  N. Arulsamy, P. A. Goodson, D. J. Hodgson, J. Glerup, K. Michelsen, Inorg. Chim. Acta 1994, 216, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. M. Coates, K. Hagan, C. A. Mitchell, J. D. Gorden, C. R. Goldsmith, Dalton Trans. 2011, 40, 4048.
         | Crossref | GoogleScholarGoogle Scholar | 21373666PubMed |

[7]  Q. Zhang, J. D. Gorden, C. R. Goldsmith, Inorg. Chem. 2013, 52, 13546.
         | Crossref | GoogleScholarGoogle Scholar | 24252099PubMed |

[8]  A. Lakatos, E. Zsigo, D. Hollender, N. V. Nagy, L. Fulop, D. Simon, Z. Bozso, T. Kiss, Dalton Trans. 2010, 39, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 20104357PubMed |

[9]  Z. Z. Hu, C. M. Schneider, C. N. Price, W. M. Pye, L. N. Dawe, F. M. Kerton, Eur. J. Inorg. Chem. 2012, 1773.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. K. Renfrew, N. S. Bryce, T. W. Hambley, Chem. Sci. 2013, 4, 3731.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. K. Renfrew, N. S. Bryce, T. W. Hambley, Chem. – Eur. J. 2015, 21, 15224.
         | Crossref | GoogleScholarGoogle Scholar | 26471438PubMed |

[12]  J. R. Aldrich-Wright, R. F. Fenton, P. Leverett, F. S. Stephens, P. A. Williams, R. S. Vagg, J. Coord. Chem. 2007, 60, 2015.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. A. Anderson, J. P. G. Richards, A. G. Stark, F. S. Stephens, R. S. Vagg, P. A. Williams, Inorg. Chem. 1986, 25, 4847.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  P. Emseis, D. E. Hibbs, P. Leverett, N. Reddy, P. A. Williams, Inorg. Chim. Acta 2004, 357, 3251.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. D. Cummings, Coord. Chem. Rev. 2009, 253, 1495.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. D. Cummings, Coord. Chem. Rev. 2009, 253, 449.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. M. Hope, J. J. Wilson, S. J. Lippard, Dalton Trans. 2013, 42, 3176.
         | Crossref | GoogleScholarGoogle Scholar | 23143731PubMed |

[18]  B. Rosenberg, L. VanCamp, J. E. Trosko, V. H. Mansour, Nature 1969, 222, 385.
         | Crossref | GoogleScholarGoogle Scholar | 5782119PubMed |

[19]  J. Reedijk, Chem. Commun. 1996, 801.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Y. Zhang, W. Zheng, Q. Luo, Y. Zhao, E. Zhang, S. Liu, F. Wang, Dalton Trans. 2015, 44, 13100.
         | Crossref | GoogleScholarGoogle Scholar | 26106875PubMed |

[21]  V. Brabec, J. Pracharova, J. Stepankova, P. J. Sadler, J. Kasparkova, J. Inorg. Biochem. 2016, 160, 149.
         | Crossref | GoogleScholarGoogle Scholar | 26778426PubMed |

[22]  P. Liu, B. Y. Wu, J. Liu, Y. C. Dai, Y. J. Wang, K. Z. Wang, Inorg. Chem. 2016, 55, 1412.
         | Crossref | GoogleScholarGoogle Scholar | 26811966PubMed |

[23]  E. Alessio, G. Mestroni, A. Bergamo, G. Sava, Curr. Top. Med. Chem. 2004, 4, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 15579094PubMed |

[24]  E. Alessio, G. Mestroni, A. Bergamo, G. Sava, Met. Ions Biol. Syst. 2004, 42, 323.
         | 15206107PubMed |

[25]  C. G. Hartinger, M. A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P. J. Dyson, B. K. Keppler, Chem. Biodivers. 2008, 5, 2140.
         | Crossref | GoogleScholarGoogle Scholar | 18972504PubMed |

[26]  M. A. Jakupec, M. Galanski, V. B. Arion, C. G. Hartinger, B. K. Keppler, Dalton Trans. 2008, 183.
         | Crossref | GoogleScholarGoogle Scholar | 18097483PubMed |

[27]  K. J. Kilpin, S. M. Cammack, C. M. Clavel, P. J. Dyson, Dalton Trans. 2013, 42, 2008.
         | Crossref | GoogleScholarGoogle Scholar | 23187957PubMed |

[28]  N. M. Shavaleev, H. Adams, J. A. Weinstein, Inorg. Chim. Acta 2007, 360, 700.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Xu, K.-C. Zheng, H. Deng, L.-J. Lin, Q.-L. Zhang, L.-N. Ji, New J. Chem. 2003, 27, 1255.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. Liu, W. J. Mei, L. J. Lin, K. C. Zheng, H. Chao, F. C. Yun, L. N. Ji, Inorg. Chim. Acta 2004, 357, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  H. T. Clarke, H. B. Gillespie, S. Z. Weisshaus, J. Am. Chem. Soc. 1933, 55, 4571.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Lorenz, B. Plietker, ChemCatChem 2016, 8, 3203.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  I. P. Evans, A. Spencer, G. Wilkinson, Dalton Trans. 1973, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. J. Barnard, R. S. Vagg, J. Inorg. Biochem. 2005, 99, 1009.
         | Crossref | GoogleScholarGoogle Scholar | 15833323PubMed |

[35]  E. C. Long, J. K. Barton, Acc. Chem. Res. 1990, 23, 271.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  P. Leverett, J. Petherick, P. Williams, R. Vagg, J. Coord. Chem. 1999, 49, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  M. Cusumano, M. L. Di Pietro, A. Giannetto, Inorg. Chem. 2006, 45, 230.
         | Crossref | GoogleScholarGoogle Scholar | 16390060PubMed |

[38]  B. J. Pages, F. Li, P. Wormell, D. L. Ang, J. K. Clegg, C. J. Kepert, L. K. Spare, S. Danchaiwijit, J. R. Aldrich-Wright, Dalton Trans. 2014, 43, 15566.
         | Crossref | GoogleScholarGoogle Scholar | 25197979PubMed |

[39]  B. J. Pages, K. B. Garbutcheon‐Singh, J. R. Aldrich‐Wright, Eur. J. Inorg. Chem. 2017, 1613.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  D. M. Fisher, P. J. Bednarski, R. Grunert, P. Turner, R. R. Fenton, J. R. Aldrich-Wright, ChemMedChem 2007, 2, 488.
         | Crossref | GoogleScholarGoogle Scholar | 17340669PubMed |

[41]  N. J. Wheate, R. I. Taleb, A. M. Krause-Heuer, R. L. Cook, S. Wang, V. J. Higgins, J. R. Aldrich-Wright, Dalton Trans. 2007, 5055.
         | Crossref | GoogleScholarGoogle Scholar | 17992290PubMed |

[42]  K. M. Deo, J. Sakoff, J. Gilbert, Y. Zhang, J. R. Aldrich Wright, Dalton Trans. 2019, 48, 17217.
         | Crossref | GoogleScholarGoogle Scholar | 31729519PubMed |

[43]  M. M. Haghdoost, J. Guard, G. Golbaghi, A. Castonguay, Inorg. Chem. 2018, 57, 7558.
         | Crossref | GoogleScholarGoogle Scholar | 29888595PubMed |

[44]  R. Pettinari, F. Marchetti, C. Di Nicola, C. Pettinari, A. Galindo, R. Petrelli, L. Cappellacci, M. Cuccioloni, L. Bonfili, A. M. Eleuteri, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Inorg. Chem. 2018, 57, 14123.
         | Crossref | GoogleScholarGoogle Scholar | 30362721PubMed |

[45]  B. Sun, M. K. Sundaraneedi, H. M. Southam, R. K. Poole, I. F. Musgrave, F. R. Keene, J. G. Collins, Dalton Trans. 2019, 48, 14505.
         | Crossref | GoogleScholarGoogle Scholar | 31531475PubMed |