Rational Construction of a 2D PbII Coordination Polymer as a Sensitive Turn-Off Fluorescent Switch for Fe3+, Cr2O72−, and NFT
Li Yi A and Feng Guo B CA School of Physical Education and Health Science, Yangtze Normal University, Fuling, Chongqing 408100, China.
B Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
C Corresponding author. Email: guofeng1510@yeah.net
Australian Journal of Chemistry 73(1) 21-29 https://doi.org/10.1071/CH19416
Submitted: 28 August 2019 Accepted: 28 October 2019 Published: 10 December 2019
Abstract
A PbII coordination polymer, [Pb(L)2]n (denoted as complex 1), was generated successfully by the assembly process of PbII and 5-fluoronicotinic acid (HL) under solvothermal synthesis. The obtained 1 was characterised by element analysis, powder and single-crystal X-ray diffraction, thermogravimetric analysis, and UV-vis and fluorescent spectroscopy. The resultant 1 has an outstanding application as a fluorescent sensor for Fe3+, Cr2O72−, and NFT with excellent selectivity and reusability.
References
[1] A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H.-C. Zhou, Chem. Soc. Rev. 2018, 47, 8611.| Crossref | GoogleScholarGoogle Scholar | 30234863PubMed |
[2] C. Zhang, Y. Liu, L. Sun, H. Shi, C. Shi, Z. Liang, J. Li, Chem. – Eur. J. 2018, 24, 2718.
| Crossref | GoogleScholarGoogle Scholar | 29383763PubMed |
[3] J. Bitzer, W. Kleist, Chem. – Eur. J. 2019, 25, 1866.
| Crossref | GoogleScholarGoogle Scholar | 30238520PubMed |
[4] H. He, J. A. Perman, G. Zhu, S. Ma, Small 2016, 12, 6309.
| Crossref | GoogleScholarGoogle Scholar | 27762496PubMed |
[5] P. Yang, M. Gong, Y. Ye, Y. Li, Q. Zhuang, J. Gu, Chem. Asian J. 2019, 14, 135.
| Crossref | GoogleScholarGoogle Scholar | 30444305PubMed |
[6] Y. Zhao, X. G. Yang, X. M. Lu, C. D. Yang, N. N. Fan, Z. T. Yang, L. Y. Wang, L. F. Ma, Inorg. Chem. 2019, 58, 6215.
| Crossref | GoogleScholarGoogle Scholar | 31002240PubMed |
[7] X.-X. Wu, H.-R. Fu, M.-L. Han, Z. Zhou, L.-F. Ma, Cryst. Growth Des. 2017, 17, 6041.
| Crossref | GoogleScholarGoogle Scholar |
[8] X. Feng, Y.-Q. Feng, L. Liu, L.-Y. Wang, H.-L. Song, S.-W. Ng, Dalton Trans. 2013, 42, 7741.
| Crossref | GoogleScholarGoogle Scholar | 23549773PubMed |
[9] Y.-J. Cheng, R. Wang, S. Wang, X.-J. Xi, L.-F. Ma, S.-Q. Zang, Chem. Commun. 2018, 54, 13563.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Wang, N. Zhang, E. Zhang, Y. Han, Z. Qi, M. B. Ansorge-Schumacher, Y. Ge, C. Wu, Chem. – Eur. J. 2019, 25, 1716.
| Crossref | GoogleScholarGoogle Scholar | 30475411PubMed |
[11] Y. Zhao, D. S. Deng, L. F. Ma, B. M. Ji, L. Y. Wang, Chem. Commun. 2013, 49, 10299.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. He, Q. Sun, W. Gao, J. A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest, B. Space, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 4657.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. Dong, G.-X. Yang, X. Zhang, X.-B. Meng, J.-L. Sheng, S.-J. Sun, Y.-J. Feng, F.-M. Zhang, Chem. – Eur. J. 2018, 24, 17148.
| Crossref | GoogleScholarGoogle Scholar | 30125400PubMed |
[14] G. Zhu, M. Zhang, Y. Bu, L. Lu, X. Lou, L. Zhu, Chem. Asian J. 2018, 13, 2891.
| Crossref | GoogleScholarGoogle Scholar | 30151959PubMed |
[15] H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 24517.
| Crossref | GoogleScholarGoogle Scholar | 27580160PubMed |
[16] Y. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2019, 58, 8145.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Han, K. Liu, M. A. Sinnwell, L. Liu, H. Huang, P. K. Thallapally, Inorg. Chem. 2019, 58, 8922.
| Crossref | GoogleScholarGoogle Scholar | 31247838PubMed |
[18] R. Liu, Q.-Y. Liu, R. Krishna, W. Wang, C.-T. He, Y.-L. Wang, Inorg. Chem. 2019, 58, 5089.
| Crossref | GoogleScholarGoogle Scholar | 30916556PubMed |
[19] J. Zha, X. Zhang, Cryst. Growth Des. 2018, 18, 3209.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Zhao, L. Wang, N.-N. Fan, M.-L. Han, G.-P. Yang, L.-F. Ma, Cryst. Growth Des. 2018, 18, 7114.
| Crossref | GoogleScholarGoogle Scholar |
[21] Q.-Q. Zhu, H. He, Y. Yan, J. Yuan, D.-Q. Lu, D.-Y. Zhang, F. Sun, G. Zhu, Inorg. Chem. 2019, 58, 7746.
| Crossref | GoogleScholarGoogle Scholar | 31140790PubMed |
[22] J. Xiao, J. Liu, M. Liu, G. Ji, Z. Liu, Inorg. Chem. 2019, 58, 6167.
| Crossref | GoogleScholarGoogle Scholar | 30998327PubMed |
[23] Y.-S. Xue, W. Cheng, J.-P. Cao, Y. Xu, Chem. Asian J. 2019, 14, 1949.
| Crossref | GoogleScholarGoogle Scholar | 30884145PubMed |
[24] H. He, Q.-Q. Zhu, F. Sun, G. Zhu, Cryst. Growth Des. 2018, 18, 5573.
| Crossref | GoogleScholarGoogle Scholar |
[25] D. Zhang, Z.-Z. Xue, J. Pan, M.-M. Shang, Y. Mu, S.-D. Han, G.-M. Wang, Cryst. Growth Des. 2018, 18, 7041.
| Crossref | GoogleScholarGoogle Scholar |
[26] B. Ma, J. Xu, H. Qi, J. Sun, J. Chai, J. Jia, S. Jing, Y. Fan, L. Wang, J. Solid State Chem. 2018, 258, 42.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. He, F. Sun, T. Borjigin, N. Zhao, G. Zhu, Dalton Trans. 2014, 43, 3716.
| Crossref | GoogleScholarGoogle Scholar | 24434850PubMed |
[28] F. Guo, Z. Chu, M. Zhao, B. Zhu, X. Zhang, J. Solid State Chem. 2019, 274, 92.
| Crossref | GoogleScholarGoogle Scholar |
[29] N. Gcwensa, N. Chatterjee, C. L. Oliver, Inorg. Chem. 2019, 58, 2080.
| Crossref | GoogleScholarGoogle Scholar | 30676726PubMed |
[30] X. Zhao, S. Wang, L. Zhang, S. Liu, G. Yuan, Inorg. Chem. 2019, 58, 2444.
| Crossref | GoogleScholarGoogle Scholar | 30702275PubMed |
[31] T.-C. Chen, M.-J. Tsai, J.-Y. Wu, Chem. – Eur. J. 2019, 25, 1337.
| Crossref | GoogleScholarGoogle Scholar | 30393906PubMed |
[32] H. He, Y. Song, F. Sun, Z. Bian, L. Gao, G. Zhu, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 16598.
| Crossref | GoogleScholarGoogle Scholar |
[33] Z.-Y. Zhou, Y.-H. Han, X.-S. Xing, S.-W. Du, ChemPlusChem 2016, 81, 798.
| Crossref | GoogleScholarGoogle Scholar |
[34] C.-X. Yang, H.-B. Ren, X.-P. Yan, Anal. Chem. 2013, 85, 7441.
| Crossref | GoogleScholarGoogle Scholar | 23826852PubMed |
[35] D. Prá, A. B. B. Nutr, L. L. M. B. Nutr, L. H. B. Nutr, J. A. Horta, S. W. Maluf, J. A. P. Henriques, M. Fenech, S. I. R. Franke, Nutrition 2011, 27, 293.
| Crossref | GoogleScholarGoogle Scholar | 20688476PubMed |
[36] S. Chen, Z. Shi, L. Qin, H. Jia, H. Zheng, Cryst. Growth Des. 2017, 17, 67.
| Crossref | GoogleScholarGoogle Scholar |
[37] Z. Han, L. Qi, G. Shen, W. Liu, Y. Chen, Anal. Chem. 2007, 79, 5862.
| Crossref | GoogleScholarGoogle Scholar | 17583966PubMed |
[38] K. M. Copper, T. L. Fodey, K. Campbell, C. T. Elliott, Curr. Org. Chem. 2017, 21, 2675.
[39] B. L. Edhlund, W. A. Arnold, K. McNeill, Environ. Sci. Technol. 2006, 40, 5422.
| Crossref | GoogleScholarGoogle Scholar | 16999120PubMed |
[40] R. Chait, A. Craney, R. Kishony, Nature 2007, 446, 668.
| Crossref | GoogleScholarGoogle Scholar | 17410176PubMed |
[41] H. Bai, H. Yuan, C. Nie, B. Wang, F. Lv, L. Liu, S. Wang, Angew. Chem. Int. Ed. 2015, 54, 13208.
| Crossref | GoogleScholarGoogle Scholar |
[42] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[43] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[44] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |
[45] H. He, Q.-Q. Zhu, C.-P. Li, M. Du, Cryst. Growth Des. 2019, 19, 694.
| Crossref | GoogleScholarGoogle Scholar |
[46] C. Yu, X. Sun, L. Zou, G. Li, L. Zhang, Y. Liu, Inorg. Chem. 2019, 58, 4026.
| Crossref | GoogleScholarGoogle Scholar | 30829481PubMed |
[47] J.-Z. Wei, F.-X. Gong, X.-J. Sun, Y. Li, T. Zhang, X.-J. Zhao, F.-M. Zhang, Inorg. Chem. 2019, 58, 6742.
| Crossref | GoogleScholarGoogle Scholar | 31026150PubMed |
[48] W.-H. Huang, J. Ren, Y.-H. Yang, X.-M. Li, Q. Wang, N. Jiang, J.-Q. Yu, F. Wang, J. Zhang, Inorg. Chem. 2019, 58, 1481.
| Crossref | GoogleScholarGoogle Scholar | 30601003PubMed |
[49] J. Xiao, J. Liu, M. Liu, G. Ji, Z. Liu, Inorg. Chem. 2019, 58, 6167.
| Crossref | GoogleScholarGoogle Scholar | 30998327PubMed |
[50] K. Fan, S.-S. Bao, W.-X. Nie, C.-H. Liao, L.-M. Zheng, Inorg. Chem. 2018, 57, 1079.
| Crossref | GoogleScholarGoogle Scholar | 29363953PubMed |
[51] J.-Y. Liang, G.-P. Li, R.-C. Gao, N.-N. Bai, W.-Q. Tong, L. Hou, Cryst. Growth Des. 2017, 17, 6733.
| Crossref | GoogleScholarGoogle Scholar |
[52] K. Ren, S.-H. Wu, X.-F. Guo, H. Wang, Inorg. Chem. 2019, 58, 4223.
| Crossref | GoogleScholarGoogle Scholar | 30869880PubMed |
[53] Z.-W. Zhai, S.-H. Yang, M. Cao, L.-K. Li, C.-X. Du, S.-Q. Zang, Cryst. Growth Des. 2018, 18, 7173.
| Crossref | GoogleScholarGoogle Scholar |
[54] H. Pan, S. Wang, X. Dao, Y. Ni, Inorg. Chem. 2018, 57, 1417.
| Crossref | GoogleScholarGoogle Scholar | 29345462PubMed |
[55] B.-X. Dong, Y.-M. Pan, W.-L. Liu, Y.-L. Teng, Cryst. Growth Des. 2018, 18, 431.
| Crossref | GoogleScholarGoogle Scholar |
[56] X.-D. Zhu, K. Zhang, Y. Wang, W.-W. Long, R.-J. Sa, T.-F. Liu, J. Lü, Inorg. Chem. 2018, 57, 1060.
| Crossref | GoogleScholarGoogle Scholar | 29308896PubMed |
[57] F. Zhang, H. Yao, T. Chu, G. Zhang, Y. Wang, Y. Yang, Chem. – Eur. J. 2017, 23, 10293.
| Crossref | GoogleScholarGoogle Scholar | 28474416PubMed |
[58] Q. Zhang, M. Lei, H. Yan, J. Wang, Y. Shi, Inorg. Chem. 2017, 56, 7610.
| Crossref | GoogleScholarGoogle Scholar | 28665122PubMed |