Using Molecular Modelling to Understand and Predict the Impact of Organic Additives as Crystal Growth Modifiers
Franca Jones A C and Andrew L. Rohl BA Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
B Curtin Institute for Computation and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
C Corresponding author. Email: f.jones@curtin.edu.au
Australian Journal of Chemistry 73(8) 724-733 https://doi.org/10.1071/CH19388
Submitted: 8 August 2019 Accepted: 14 October 2019 Published: 7 January 2020
Abstract
Empirical molecular modelling was used to investigate the impact of organic additives on crystal morphology and inhibition. The replacement energy was found to correlate reasonably well with the degree of inhibition as determined from conductivity data. The replacement energy was also able to predict the barium sulfate face on which additive adsorption was most likely. While the ability of the organic functional groups to sit in the vacant sulfate lattice positions (the so-called ‘lattice matching’ criteria) appears intuitively sensible, it was found that this is not a sufficient criterion to predict real behaviour. A better criterion is the overall replacement energy as it takes into consideration the number of Ba–Oorganic interactions and whether the adsorption process overall is energetically favourable (by including the hydration energy of the ions). Thus, the replacement energy can successfully predict the effect of organic molecules on the crystal growth modification of barium sulfate.
References
[1] B. Bansal, H. Müller-Steinhagen, J. Heat Transfer 1993, 115, 584.| Crossref | GoogleScholarGoogle Scholar |
[2] T. R. Bott, Fouling of Heat Exchangers 1995 (Elsevier: Amsterdam).
[3] J. M. Brown, J. F. McDowell, K. T. Chang, US Patent, USXXAM US 5062962 A 19911105, 1991.
[4] B. G. Clubley, J. Rideout, European Patent, EPXXDW EP 479465 A2 19920408, 1992.
[5] D. Ester, Advanced Bleaching Technology 1997 (Miller Freeman: San Francisco, CA).
[6] J. A. Hardy, R. T. Barthorpe, M. A. Plummer, J. S. Rhudy, SPE Prod. Facil. 1994, 9, 127.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. M. Holt, European Patent, EPXXDW EP 408297 A1 19910116, 1991.
[8] L. F. Melo, T. R. Bott, C. A. Bernardo, Fouling Science and Technology 1988 (Kluwer Academic Publishers: Dordrecht).
[9] J. F. Tate, US Patent, USXXAM US 3806451 19740423, 1974.
[10] T. Ueda, T. Haruki, Japan Patent, JKXXAF JP 01104399 A2 19890421, 1989.
[11] P. Bainbridge, V. Rowan, US Patent, USXXAM US 4937002 A 19900626, 1990.
[12] B. Cook, European Patent, EPXXDW EP 297049 A1 19881228, 1988.
[13] J. R. Gevecker, Proceeding of the Annual Southwest Petroleum Short Course, Lubbock, Texas, pp. 117–121, 1976.
[14] E. Rizkalla, J. Chem. Soc., Faraday Trans. I 1983, 79, 1857.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. F. Yaroshenko, N. M. Dyatlova, N. E. Khavchenko, L. V. Krinitskaya, L. T. Dytyuk, R. Kh. Samakaev, V. I. Gusev, L. I. Kutyanin, N. A. Dobroradnykh, USSR Patent, URXXAF SU 1231061 A1 19860515, 1986.
[16] D. O. Falk, P. M. Beazley, F. L. Dormish, R. G. Thompson, Patent Cooperation Treaty (PCT) International Patent, PIXXD2 WO 9106511 A1 19910516, 1991.
[17] L. P. Koskan, K. C. Low, US Patent, USXXAM US 5116513 A 19920526, 1992.
[18] L. A. Perez, D. F. Zidovc, in Mineral Scale Formation and Inhibition (Ed. Z. Amjad) 1995, pp. 47–61 (Plenum: New York, NY).
[19] R. Ross, K. Low, J. Shannon, Mater. Perform. 1997, 36, 53.
[20] K. S. Sorbie, N. Laing, in 6th International Symposium on Oilfied Scale 2004, p. SPE 87470 (Society of Petroleum Engineers Inc.: Aberdeen).
[21] V. Tantayakom, H. S. Folger, P. Charoensirithavorn, S. Chavadej, Cryst. Growth Des. 2005, 5, 329.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. Van der Leeden, G. Van Rosmalen, SPE Prod. Eng. 1990, 5, 70.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. C. Van der Leeden, G. M. Van Rosmalen, Special Publication – Royal Society of Chemistry 1988, 67 (Chem. Oil Ind.), 68–86.
[24] D. Wilson, A. F. Scholl, British UK Patent, BAXXDU GB 2328440 A1 19990224, 1999.
[25] M. Yuan, M. Anderson, E. Jamieson, in Conference Proceedings of the International Symposium on Oilfield Chemistry 1997, SPE37304 (Society of Petroleum Engineers Inc.: Texas, USA).
[26] M. Zakikhani, D. R. E. Walker, P. D. Hasling, A. C. Smith, K. P. Davis, UK Patent, EPXXDW EP 780406 A2 19970625, 1997.
[27] D. F. Zidovec, A. D. Fischer, D. D. Dreisbach, US Patent, USXXAM US 5256253 A 19931026, 1993.
[28] B. C. Barja, M. I. Tejedor-Tejedor, M. A. Anderson, Langmuir 1999, 15, 2316.
| Crossref | GoogleScholarGoogle Scholar |
[29] F. Jones, A. Stanley, A. Oliviera, A. L. Rohl, M. M. Reyhani, G. M. Parkinson, M. I. Ogden, J. Cryst. Growth 2003, 249, 584.
| Crossref | GoogleScholarGoogle Scholar |
[30] O. Nilsson, J. Sternbeck, Geochim. Cosmochim. Acta 1999, 63, 217.
| Crossref | GoogleScholarGoogle Scholar |
[31] F. Jones, J. Clegg, A. Oliviera, A. L. Rohl, M. I. Ogden, G. M. Parkinson, A. M. Fogg, M. M. Reyhani, CrystEngComm 2001, 40, 1.
[32] F. Jones, M. I. Ogden, A. Oliviera, G. M. Parkinson, W. R. Richmond, CrystEngComm 2003, 5, 159.
| Crossref | GoogleScholarGoogle Scholar |
[33] N. Allan, A. Rohl, D. Gay, C. Catlow, R. Davey, W. Mackrodt, Faraday Discuss. 1993, 95, 273.
| Crossref | GoogleScholarGoogle Scholar |
[34] K. Dunn, E. Daniel, P. Shuler, H. Chen, Y. Tang, T. Yen, J. Colloid Interface Sci. 1999, 214, 427.
| Crossref | GoogleScholarGoogle Scholar | 10339384PubMed |
[35] F. Jones, W. R. Richmond, A. L. Rohl, J. Phys. Chem. B 2006, 110, 7414.
| Crossref | GoogleScholarGoogle Scholar | 16599519PubMed |
[36] A. L. Rohl, D. H. Gay, R. J. Davey, C. R. A. Catlow, J. Am. Chem. Soc. 1996, 118, 642.
| Crossref | GoogleScholarGoogle Scholar |
[37] A. G. Stack, J. Phys. Chem. C 2009, 113, 2104.
| Crossref | GoogleScholarGoogle Scholar |
[38] F. Jones, S. Piana, J. D. Gale, Cryst. Growth Des. 2008, 8, 817.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Piana, F. Jones, J. D. Gale, J. Am. Chem. Soc. 2006, 128, 13568.
| Crossref | GoogleScholarGoogle Scholar | 17031971PubMed |
[40] S. Piana, F. Jones, J. D. Gale, CrystEngComm 2007, 9, 1187.
| Crossref | GoogleScholarGoogle Scholar |
[41] U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Mol. Simul. 2002, 28, 607.
| Crossref | GoogleScholarGoogle Scholar |
[42] C. M. Pina, U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Nature 1998, 395, 483.
| Crossref | GoogleScholarGoogle Scholar |
[43] Y. H. Jang, X. Y. Chang, M. Blanco, S. Hwang, Y. Tang, P. Shuler, W. A. Goddard, J. Phys. Chem. B 2002, 106, 9951.
| Crossref | GoogleScholarGoogle Scholar |
[44] N. de Leeuw, S. Parker, J. Harding, Phys. Rev. B Condens. Matter 1999, 60, 13792.
| Crossref | GoogleScholarGoogle Scholar |
[45] N. H. de Leeuw, J. Phys. Chem. B 2002, 106, 5241.
| Crossref | GoogleScholarGoogle Scholar |
[46] N. H. de Leeuw, Am. Mineral. 2002, 87, 679.
| Crossref | GoogleScholarGoogle Scholar |
[47] N. H. de Leeuw, T. G. Cooper, Cryst. Growth Des. 2004, 4, 123.
| Crossref | GoogleScholarGoogle Scholar |
[48] N. H. de Leeuw, S. C. Parker, J. Chem. Soc., Faraday Trans. 1997, 93, 467.
| Crossref | GoogleScholarGoogle Scholar |
[49] N. H. de Leeuw, S. C. Parker, J. Phys. Chem. B 1998, 102, 2914.
| Crossref | GoogleScholarGoogle Scholar |
[50] J. O. Titiloye, N. H. de Leeuw, S. C. Parker, Geochim. Cosmochim. Acta 1998, 62, 2637.
| Crossref | GoogleScholarGoogle Scholar |
[51] I. Weissbuch, M. Lahav, L. Leiserowitz, Cryst. Growth Des. 2003, 3, 125.
| Crossref | GoogleScholarGoogle Scholar |
[52] I. Weissbuch, L. Leiserowitz, M. Lahav, in Crystallization Technology Handbook (Ed. A. Mersmann) 1995, pp. 401–457 (Marcel Dekker, Inc.: New York, NY).
[53] S. N. Black, L. A. Bromley, D. Cottler, R. J. Davey, B. Dobbs, J. E. Rout, J. Chem. Soc., Faraday Trans. 1991, 87, 3409.
| Crossref | GoogleScholarGoogle Scholar |
[54] L. A. Bromley, D. Cottier, R. J. Davey, B. Dobbs, S. Smith, B. R. Heywood, Langmuir 1993, 9, 3594.
| Crossref | GoogleScholarGoogle Scholar |
[55] P. V. Coveney, R. J. Davey, J. L. W. Griffin, A. Whiting, Chem. Comm. 1998, 1467.
| Crossref | GoogleScholarGoogle Scholar |
[56] R. Davey, S. Black, L. Bromley, D. Cottier, B. Dobbs, J. Rout, Nature 1991, 353, 549.
| Crossref | GoogleScholarGoogle Scholar |
[57] A. Baynton, T. Becker, B. D. Chandler, F. Jones, M. I. Ogden, T. Radomirovic, G. K. H. Shimizu, CrystEngComm 2011, 13, 1090.
| Crossref | GoogleScholarGoogle Scholar |
[58] M. Boon, S. R. Freeman, M. I. Ogden, A. Oliveira, W. R. Richmond, B. W. Skelton, F. Jones, Faraday Discuss. 2015, 179, 343.
| Crossref | GoogleScholarGoogle Scholar | 25877791PubMed |
[59] K. Bunney, S. R. Freeman, M. I. Ogden, W. R. Richmond, A. L. Rohl, F. Jones, Cryst. Growth Des. 2014, 14, 1650.
| Crossref | GoogleScholarGoogle Scholar |
[60] S. R. Freeman, F. Jones, M. I. Ogden, A. Oliviera, W. R. Richmond, Cryst. Growth Des. 2006, 6, 2579.
| Crossref | GoogleScholarGoogle Scholar |
[61] F. Jones, P. Jones, R. De Marco, B. Pjecic, Appl. Surf. Sci. 2008, 254, 3459.
| Crossref | GoogleScholarGoogle Scholar |
[62] F. Jones, P. Jones, M. I. Ogden, W. R. Richmond, A. L. Rohl, M. Saunders, J. Colloid Interface Sci. 2007, 316, 553.
| Crossref | GoogleScholarGoogle Scholar | 17904573PubMed |
[63] F. Jones, A. Oliviera, G. M. Parkinson, A. L. Rohl, A. Stanley, T. Upson, J. Cryst. Growth 2004, 270, 593.
| Crossref | GoogleScholarGoogle Scholar |
[64] F. Jones, A. Oliviera, G. M. Parkinson, A. L. Rohl, A. Stanley, T. Upson, J. Cryst. Growth 2004, 262, 572.
| Crossref | GoogleScholarGoogle Scholar |
[65] F. Jones, A. Oliviera, A. L. Rohl, M. I. Ogden, G. M. Parkinson, CrystEngComm 2006, 8, 869.
| Crossref | GoogleScholarGoogle Scholar |
[66] F. Jones, A. Oliviera, A. L. Rohl, G. M. Parkinson, M. I. Ogden, M. M. Reyhani, J. Cryst. Growth 2002, 237–239, 424.
| Crossref | GoogleScholarGoogle Scholar |
[67] G. M. Parkinson, F. Jones, M. I. Ogden, A. Oliveira, M. Reyhani, W. R. Richmond, A. L. Rohl, J. Metastable Nanocryst. Mater. 2005, 23, 51.
[68] S. Piana, F. Jones, J. D. Gale, J. Am. Chem. Soc. 2006, 128, 13568.
| Crossref | GoogleScholarGoogle Scholar | 17031971PubMed |
[69] J. D. Gale, A. L. Rohl, Mol. Simul. 2003, 29, 291.
| Crossref | GoogleScholarGoogle Scholar |
[70] J. D. Gale, A. L. Rohl, Mol. Simul. 2007, 33, 1237.
| Crossref | GoogleScholarGoogle Scholar |
[71] F. Jones, W. R. Richmond, A. L. Rohl, J. Phys. Chem. B 2006, 110, 7414.
| Crossref | GoogleScholarGoogle Scholar | 16599519PubMed |
[72] A. Colville, K. Staudhammer, Am. Mineral. 1967, 52, 1877.
[73] F. C. Hawthorn, R. B. Ferguson, Can. Mineral. 1975, 13, 181.
[74] A. L. Rohl, Z. Kristallogr. 2005, 220, 580.
[75] F. Jones, A. L. Rohl, Mol. Simul. 2005, 31, 393.
| Crossref | GoogleScholarGoogle Scholar |
[76] E. Barouda, K. D. Demadis, S. R. Freeman, F. Jones, M. I. Ogden, Cryst. Growth Des. 2007, 7, 321.
| Crossref | GoogleScholarGoogle Scholar |
[77] F. Jones, M. I. Ogden, G. M. Parkinson, A. L. Rohl, CrystEngComm 2005, 7, 320.
| Crossref | GoogleScholarGoogle Scholar |
[78] T. Radomirovic, M. I. Ogden, A. L. Rohl, F. Jones, CrystEngComm 2019, 21, 807.
| Crossref | GoogleScholarGoogle Scholar |