Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Polypyridines, Picrates, Lanthanides: A Plethora of Stacks?

Eric J. Chan A , Simon A. Cotton B , Jack M. Harrowfield A C E , Brian W. Skelton A , Alexandre N. Sobolev A and Allan H. White A D
+ Author Affiliations
- Author Affiliations

A School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Highway, Perth, WA 6009, Australia.

B School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

C Current address: Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France.

D Deceased.

E Corresponding author. Email: harrowfield@unistra.fr

Australian Journal of Chemistry 73(6) 529-538 https://doi.org/10.1071/CH19367
Submitted: 8 August 2019  Accepted: 23 October 2019   Published: 23 December 2019

Abstract

Reactions of the lanthanide(iii) picrates (picrate = 2,4,6-trinitrophenoxide = pic) with 1,10-phenanthroline (phen) and 2,2′:6′,2′′-terpyridine (terpy) in a 1 : 2 molar ratio have provided crystals suitable for X-ray structure determinations in instances predominantly involving the lighter lanthanides. In all, the aza-aromatic ligands chelate the lanthanide ion, none being found as ‘free’ ligands within the lattice. The complexes of 1,10-phenanthroline have been characterised in two forms, one unsolvated (Ln = La, Sm, Eu; monoclinic, C2/c, Z 8), one an acetonitrile monosolvate (Ln = Gd; monoclinic, P21/a, Z 4), the latter being the only previously known form (with Ln = La). In both forms, the LnIII is nine-coordinate, in an approximately tricapped trigonal-prismatic environment, with two picrate ligands chelating through phenoxide and 2-nitro group oxygen atoms, the third being bound through phenoxide-O only. The 2,2′:6′,2′′-terpyridine complexes, all acetonitrile monosolvates defined for Ln = La, Gd, Er, and Y (monoclinic, C2/c, Z 4), are ionic, one picrate having been displaced from the primary coordination sphere. For Ln = La, the two bound picrates are again chelating, making the LaIII 10-coordinate in a distorted bicapped square-antiprismatic environment but in the other species they are bound through phenoxide-O only, making the LnIII ions eight-coordinate in a distorted square-antiprismatic environment. Stacked arrays of the ligands can be found in both series of complexes, with intramolecular picrate–picrate and picrate–aza-aromatic stacks being prominent features.


References

[1]  U. Olsher, H. Feinberg, F. Frolow, G. Shoham, Pure Appl. Chem. 1996, 68, 1195.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
         | Crossref | GoogleScholarGoogle Scholar | 11749322PubMed |
      (b) E. C. Constable, Adv. Inorg. Chem. 1989, 34, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) A. Bencini, V. Lippolis, Coord. Chem. Rev. 2010, 254, 2096.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. D. McKenzie, Coord. Chem. Rev. 1971, 6, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) E. C. Constable, Chem. Soc. Rev. 2007, 36, 246.
         | Crossref | GoogleScholarGoogle Scholar | 17264927PubMed |
      (b) E. C. Constable, Adv. Inorg. Chem. 1986, 30, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Harrowfield, J. Chem. Soc., Dalton Trans 1996, 3165.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) I. Dance, M. L. Scudder, CrystEngComm 2009, 11, 2233.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. Russell, M. L. Scudder, I. Dance, J. Chem. Soc., Dalton Trans. 2001, 789.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. McMurtrie, I. Dance, CrystEngComm 2005, 7, 216.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. L. Scudder, H. A. Goodwin, I. G. Dance, New J. Chem. 1999, 23, 695.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 28932404PubMed |

[10]  M. L. Waters, Acc. Chem. Res. 2013, 46, 873.
         | Crossref | GoogleScholarGoogle Scholar | 23586328PubMed |

[11]  (a) S. Ehrlich, J. Moellmann, S. Grimme, Acc. Chem. Res. 2013, 46, 916.
         | Crossref | GoogleScholarGoogle Scholar | 22702344PubMed |
      (b) S. Grimme, Angew. Chem. Int. Ed. 2008, 47, 3430.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) A. Gavezzotti, CrystEngComm 2013, 15, 4027.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. D. Dunitz, A. Gavezzotti, Cryst. Growth Des. 2012, 12, 5873.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. R. Martinez, B. L. Iverson, Chem. Sci. 2012, 3, 2191.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  L. Loots, L. J. Barbour, CrystEngComm 2012, 14, 300.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) J. W. G. Bloom, S. E. Wheeler, Angew. Chem. Int. Ed. 2011, 50, 7847.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. E. Wheeler, J. Am. Chem. Soc. 2011, 133, 10262.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E. R. T. Tiekink, Coord. Chem. Rev. 2017, 345, 209.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. A. Cotton, J. M. Harrowfield, L. Semenova, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. M. Harrowfield, W. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 321.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |

[21]  S. A. Cotton, P. R. Raithby, Coord. Chem. Rev. 2017, 340, 220.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  E. N. Rizkalla, G. R. Choppin, in Handbook on the Physics and Chemistry of the Rare Earths (Eds K. A. Geschneidner, Jr, L. Eyring) 1991, Vol. 15, Ch. 103, pp. 393–442 (Elsevier-North Holland: Amsterdam).

[23]  F. P. Liang, R. X. Hu, E. T. Pang, X. L. Tang, H. Liang, Z. H. Zhou, Wuji Huaxue Xuebao 2000, 16, 139.

[24]  S. A. Cotton, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. J. Meyer) 2004, Vol. 3, pp. 93–188 (Elsevier: Amsterdam).

[25]  M. Fréchette, I. R. Butler, R. Hynes, C. Detellier, Inorg. Chem. 1992, 31, 1650.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. L. Kepert, L. I. Semenova, A. N. Sobolev, A. H. White, Aust. J. Chem. 1996, 49, 1005.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Y.-Q. Zheng, L.-X. Zhou, J.-L. Lin, S.-W. Zhang, Z. Anorg. Allg. Chem. 2001, 627, 1643.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. K. Boudalis, V. Nastopoulos, S. P. Perlepes, C. P. Raptopoulou, A. Terzis, Transition Met. Chem. 2001, 26, 276.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  Ahrens  B.Cotton  S. A.Franckevicius  V.Ooi  L. L.Raithby  P. R.Aust. J. Chem., in press.

[30]  E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Z. Asfari, E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, P. Thuéry, A. H. White, Aust. J. Chem. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. D. Shannon, Acta Crystallogr. 1976, A32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. A. Durham, G. H. Frost, F. A. Hart, J. Inorg. Nucl. Chem. 1969, 31, 833.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  G. H. Frost, F. A. Hart, C. Heath, M. B. Hursthouse, Chem. Commun. 1969, 1421.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  L. I. Semenova, A. N. Sobolev, B. W. Skelton, A. H. White, Aust. J. Chem. 1999, 52, 519.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  J.-C. Berthet, Y. Miquel, P. B. Iveson, M. Nierlich, P. Thuéry, C. Madic, M. Ephritikhine, J. Chem. Soc., Dalton Trans. 2002, 3265.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  L. I. Semenova, A. H. White, Aust. J. Chem. 1999, 52, 507.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  M. G. B. Drew, P. B. Iveson, M. J. Hudson, J. O. Liljenzin, L. Spjuth, P.-Y. Cordier, Å. Enarsson, C. Hill, C. Madic, J. Chem. Soc., Dalton Trans. 2000, 821.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  S. P. Sinha, Z. Naturforsch. A 1965, 20, 552.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. D. Glick, L. J. Radonovich, Inorg. Chem. 1971, 10, 1463.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. J. Kepert, W. M. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 365.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  S. A. Cotton, V. Franckevicius, R. E. How, B. Ahrens, L. L. Ooi, M. F. Mahon, P. R. Raithby, S. J. Teat, Polyhedron 2003, 22, 1489.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  J.-C. Berthet, M. Nierlich, Y. Miquel, C. Madic, M. Ephritikhine, Dalton Trans. 2005, 369.
         | Crossref | GoogleScholarGoogle Scholar | 15616729PubMed |

[44]  M. Fréchette, C. Bensimon, Inorg. Chem. 1995, 34, 3520.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[46]  (a) M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. A. Spackman, Phys. Scr. 2013, 87, 048103.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer 2012 (University of Western Australia: Perth).

[48]  E. J. Chan, S. Grabowsky, J. M. Harrowfield, M. W. Shi, B. W. Skelton, A. N. Sobolev, A. H. White, CrystEngComm 2014, 16, 4508.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. S. Hundal, G. Sood, P. Kapoor, N. S. Poonia, J. Crystallogr. Spectrosc. Res. 1991, 21, 201.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  J. A. Kanters, P. F. W. Stouten, V. Vijaywargia, N. S. Poonia, Polyhedron 1987, 6, 1833.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  J. A. Kanters, R. Postma, A. J. M. Duisenberg, K. Venkatasubramanian, N. S. Poonia, Acta Cryst. Sect. C Cryst. Struct. Comm. 1983, 39, 1519.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  R. Postma, J. A. Kanters, A. J. M. Duisenberg, K. Venkatasubramanian, N. S. Poonia, Acta Cryst., Sect. C Cryst. Struct. Comm. 1983, 39, 1221.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  V. Vijayvergiya, B. Padmanabhan, T. P. Singh, Acta Cryst. Sect. C Cryst. Struct. Comm. 1995, 51, 2235.
         | Crossref | GoogleScholarGoogle Scholar |