Synthesis, Structure, and Biological Assays of Novel Trifluoromethyldiazepine–Metal Complexes
Mariana Rocha A , Gustavo A. Echeverría B G , Oscar E. Piro B G , Jorge J. Jios C , Rocío D. I. Molina D , Mario E. Arena D G , Sonia E. Ulic E F G and Diego M. Gil A G HA INQUINOA (CONICET – UNT), Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.
B Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), CC 67, 1900, La Plata, Argentina.
C UNIDAD PLAPIMU-LASEISIC (UNLP-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900, La Plata, Argentina.
D INBIOFAL (Instituto de Biotecnología Farmacéutica y Alimentaria)-CONICET y Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Avenida Kirchner 1900, Tucumán, 4000, Argentina.
E CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 Nº 1465, 1900, La Plata, Argentina.
F Departamento de Ciencias Básicas, Universidad Nacional de Luján, Rutas 5 y 7, 6700, Luján, Buenos Aires, Argentina.
G Members of the research Career of CONICET.
H Corresponding author. Email: dmgil@fbqf.unt.edu.ar
Australian Journal of Chemistry 73(1) 49-60 https://doi.org/10.1071/CH19352
Submitted: 27 July 2019 Accepted: 20 November 2019 Published: 20 December 2019
Abstract
A new series of CuII, NiII, CoII, and MnIII complexes have been synthesised from the (6Z)-6-(7-trifluoromethyl-1,2,3,4-tetrahydro-5H-1,4-diazepin-5-ylidene)cyclohexa-2,4-dien-1-one (HDZP) ligand. These complexes were characterised by elemental, spectroscopic (IR and UV-vis), and thermal analysis. The crystal structure of Cu-DZP was solved by X-ray diffraction methods. The complex crystallises in the monoclinic P21/c space group, with two molecules per unit cell. The crystal lattice is stabilised by different intra and intermolecular interactions. Hirshfeld surface analysis was employed to obtain additional information about interactions that are responsible for the crystal packing. Quantitative examination of the fingerprint plots indicated the dominant contribution of H⋯H and H⋯X (X = O, F) interactions in the crystal packing. In addition, C–H⋯chelate ring (CR) and C–H⋯π interactions are described in detail and evaluated using DFT calculations. The antibacterial properties and the mechanism of inhibition of the main bacterial resistant mechanism, the biofilm, of the metal complexes and free ligand were investigated. [Mn(DZP)3]·2H2O was the most active complex against the Pseudomonas aeruginosa biofilm formation with an inhibition of 40 %. However, none of the complexes inhibit more than 25 % of the Gram negative bacteria microbial development. The most meaningful result was the bactericidal effect of [Co(DZP)2(H2O)2]·2H2O against the Gram positive bacteria, Staphylococcus aureus, which inhibits the bacterial development and significantly reduces the biofilm formation at low concentration.
References
[1] L. H. Sternbach, L. O. Randall, R. F. Banziger, H. Lehr, in Drugs Affecting the Central Nervous Systems (Eds A. Burger, M. Dekker) 1968, Medicinal Research Series, Vol. 2, pp. 237–264 (Marcel Dekker Inc.: New York, NY).[2] N. A. Meanwell, M. A. Walker, in Comprehensive Heterocyclic Chemistry III (Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor) 2008, pp. 183–235 (Elsevier Ltd: Oxford).
[3] J. H. Ryan, C. Hyland, J. Just, A. G. Meyer, J. A. Smith, C. C. Williams, in Progress in Heterocyclic Chemistry (Eds G. W. Gribble, J. A. Joule) 2013, pp. 455–495 (Elsevier BV: Amsterdam).
[4] G. A. Archer, L. E. O. H. Sternbach, Chem. Rev. 1968, 68, 747.
| Crossref | GoogleScholarGoogle Scholar |
[5] L. L. Brunton, B. A. Chabner, B. C. Knollmann (Eds), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 12th edn 2011 (McGraw Hill Professional: New York, NY).
[6] R. Kumar, Y. Chandra Joshi, J. Chem. Sci. 2009, 121, 497.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Kenchappa, Y. D. Bodke, S. Telkar, O. Nagaraja, Russ. J. Gen. Chem. 2017, 87, 2027.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. S. Biradar, S. B. Somappa, Arab. J. Chem. 2016, 9, S1063.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. A. Henderson, D. G. Alber, R. C. Baxter, S. K. Bithell, J. Budworth, M. C. Carter, A. Chubb, G. S. Cockerill, V. C. L. Dowdell, I. J. Fraser, R. A. Harris, S. J. Keegan, R. D. Kelsey, J. A. Lumley, J. N. Stables, N. Weerasekera, L. J. Wilson, K. L. Powell, J. Med. Chem. 2007, 50, 1685.
| Crossref | GoogleScholarGoogle Scholar | 17341059PubMed |
[10] J. G. Ghogare, S. V. Bhandari, K. G. Bothara, A. R. Madgulkar, G. A. Parashar, B. G. Sonawane, P. R. Inamdar, Eur. J. Med. Chem. 2010, 45, 857.
| Crossref | GoogleScholarGoogle Scholar | 20034707PubMed |
[11] R. K. Gill, S. O. Kaushik, J. Chugh, S. Bansal, A. Shah, J. Bariwal, Mini Rev. Med. Chem. 2014, 14, 229.
| Crossref | GoogleScholarGoogle Scholar | 25311001PubMed |
[12] G. M. Karp, M. C. Manfredi, M. A. Guaciaro, C. L. Ortlip, P. Marc, I. T. Szamosi, J. Agric. Food Chem. 1997, 45, 493.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. J. Kukla, H. J. Breslin, C. J. Diamond, P. P. Grous, C. Y. Ho, M. Miranda, J. D. Rodgers, R. G. Sherrill, E. De Clercq, R. Pauwels, K. Andries, L. J. Moens, M. A. C. Janssen, P. A. J. Janssen, J. Med. Chem. 1991, 34, 3187.
| Crossref | GoogleScholarGoogle Scholar | 1956037PubMed |
[14] N. Bennamane, R. Kaoua, L. Hammal, B. Nedjar-Kolli, Org. Commun. 2008, 1, 62.
[15] J. X. Xu, H. T. Wu, S. Jin, Chin. J. Chem. 1999, 17, 84.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. Nabih, A. Baouid, A. Hasnaoui, A. Kenz, Synth. Commun. 2004, 34, 3565.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. I. Fryer, C. Cook, N. W. Gilman, A. Walser, Life Sci. 1986, 39, 1947.
| Crossref | GoogleScholarGoogle Scholar | 3023774PubMed |
[18] V. Venkatraj, R. Jeyaraman, Indian J. Chem. 2006, 45B, 1531.
[19] C. D. Alcívar León, G. A. Echeverría, O. E. Piro, S. E. Ulic, J. L. Jios, C. A. Luna Tapia, M. F. Mera Guzmán, Mol. Phys. 2019, 117, 368.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. C. Aversa, P. Bonaccorsi, M. Cusumano, P. Giannetto, D. Minniti, J. Chem. Soc., Dalton Trans. 1991, 3431.
| Crossref | GoogleScholarGoogle Scholar |
[21] R. A. Peralta, A. Neves, A. J. Bortoluzzi, A. Casellato, A. dos Anjos, A. Greatti, F. R. Xavier, B. Szpoganicz, Inorg. Chem. 2005, 44, 7690.
| Crossref | GoogleScholarGoogle Scholar | 16241112PubMed |
[22] S. Zhang, W. H. Sun, X. F. Kuang, I. Vystorop, J. J. Yi, J. Organomet. Chem. 2007, 692, 5307.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Romba, D. Kuppert, B. Morgenstern, C. Neis, S. Steinhauser, T. Weyhermüller, K. Hegetschweiler, Eur. J. Inorg. Chem. 2006, 314.
| Crossref | GoogleScholarGoogle Scholar |
[24] G. Borkow, J. Gabbay, Curr. Med. Chem. 2005, 12, 2163.
| Crossref | GoogleScholarGoogle Scholar | 16101497PubMed |
[25] Q. Liu, R. Huo, D. Wei, X. Zhao, Z. Zhao, K. Cai, Dyes Pigments 2017, 139, 1.
| Crossref | GoogleScholarGoogle Scholar |
[26] P. Mahapatra, A. Bauzá, A. Frontera, M. G. B. Drew, A. Ghosh, Inorg. Chim. Acta 2018, 477, 89.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. K. Bhattacharyya, U. Saha, D. Dutta, A. Das, A. K. Verma, A. Frontera, RSC Adv. 2019, 9, 16339.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. Mahmoudi, A. Bauzá, A. V. Gurbanov, F. I. Zubkov, W. Maniukiewicz, A. Rodríguez-Diéguez, E. López-Torres, A. Frontera, CrystEngComm 2016, 18, 9056.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Maity, H. Mandal, A. Bauzá, B. C. Samanta, A. Frontera, S. K. Seth, New J. Chem. 2018, 42, 10202.
| Crossref | GoogleScholarGoogle Scholar |
[30] M. Dzieciol, E. Schornsteiner, M. Muhterem-Uyar, B. Stessl, M. Wagner, S. Schmitz-Esser, Int. J. Food Microbiol. 2016, 223, 33.
| Crossref | GoogleScholarGoogle Scholar | 26881738PubMed |
[31] N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu, Int. J. Antimicrob. Agents 2010, 35, 322.
| Crossref | GoogleScholarGoogle Scholar | 20149602PubMed |
[32] M. Rocha, G. A. Echeverría, O. E. Piro, J. L. Jios, S. E. Ulic, D. M. Gil, J. Org. Chem. 2019, 84, 11042.
| Crossref | GoogleScholarGoogle Scholar | 31419129PubMed |
[33] V. Ya. Sosnovskikh, B. I. Usachev, Russ. Chem. Bull. 2001, 50, 1426.
| Crossref | GoogleScholarGoogle Scholar |
[34] CrysAlisPro, version 1.171.33.48 (release 15–09–2009 CrysAlis171.NET) 2009 (Oxford Diffraction Ltd: UK).
[35] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
[36] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[37] P. Van der Sluis, A. L. Spek, Acta Crystallogr. 1999, A46, 194.
[38] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 1998 (Utrecht University: Utrecht, The Netherlands).
[39] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Crystallogr. 2004, B60, 627.
| Crossref | GoogleScholarGoogle Scholar |
[40] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2007, 3814.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
| Crossref | GoogleScholarGoogle Scholar |
[42] M. A. Spackman, Chem. Rev. 1992, 92, 1769.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17 2017 (University of Western Australia: Perth).
[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).
[45] R. F. W. Bader, Atoms in Molecules: A Quantum Theory 1990 (Oxford University Press: Oxford).
[46] G. A. O’Toole, R. Kolter, Mol. Microbiol. 1998, 28, 449.
| Crossref | GoogleScholarGoogle Scholar | 9632250PubMed |
[47] J. E. Galván, M. E. Defonsi Lestard, O. E. Piro, G. Echeverría, R. D. I. Molina, M. E. Arena, S. E. Ulic, M. E. Tuttolomondo, A. Ben Altabef, New J. Chem. 2018, 42, 11073.
| Crossref | GoogleScholarGoogle Scholar |
[48] CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically (Approved Standard – Seventh Edition document M7–A7) 2006 (CLSI: Wayne, PA).
[49] R. Bikas, M. Emami, K. Slepokura, N. Noshiranzadeh, New J. Chem. 2017, 41, 9710.
| Crossref | GoogleScholarGoogle Scholar |
[50] N. Kavitha, P. V. Anantha Lakshmi, J. Saudi Chem. Soc. 2017, 21, S457.
| Crossref | GoogleScholarGoogle Scholar |
[51] K. Kavitha, M. Rama Chary, B. V. V. A. Singavarapu, K. Laxma Reddy, J. Saudi Chem. Soc. 2016, 20, 69.
| Crossref | GoogleScholarGoogle Scholar |
[52] A. Dutta, S. Biswas, M. Dolai, B. K. Shaw, A. Mondal, S. K. Saha, M. Ali, RSC Adv. 2015, 5, 23855.
| Crossref | GoogleScholarGoogle Scholar |
[53] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar |
[54] M. Khorshidifard, H. Amiri Rudbari, Z. Kazemi-Delikani, V. Mirkhani, R. Azadbakht, J. Mol. Struct. 2015, 1081, 494.
| Crossref | GoogleScholarGoogle Scholar |
[55] Z. Abbasi, M. Salehi, A. Khaleghian, M. Kubicki, J. Mol. Struct. 2018, 1173, 213.
| Crossref | GoogleScholarGoogle Scholar |
[56] N. Poulter, M. Donaldson, G. Mulley, L. Duque, N. Waterfield, A. G. Shard, S. Spencer, A. Tobias, A. Jenkins, A. L. Johnson, New J. Chem. 2011, 35, 1477.
| Crossref | GoogleScholarGoogle Scholar |
[57] H. J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924.
| Crossref | GoogleScholarGoogle Scholar |
[58] L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808.
| Crossref | GoogleScholarGoogle Scholar |
[59] S. Grimme, Chem. – Eur. J. 2012, 18, 9955.
| Crossref | GoogleScholarGoogle Scholar | 22782805PubMed |
[60] E. Espinosa, E. Molins, C. Lacomte, Chem. Phys. Lett. 1998, 285, 170.
| Crossref | GoogleScholarGoogle Scholar |
[61] E. Espinosa, I. Alkorta, J. Elguero, E. Molins, Acta Crystallogr. 2004, 60A, s177.
| Crossref | GoogleScholarGoogle Scholar |
[62] S. Burt, Int. J. Food Microbiol. 2004, 94, 223.
| Crossref | GoogleScholarGoogle Scholar | 15246235PubMed |
[63] M. C. Fariñas, L. Martínez-Martínez, Enferm. Infecc. Microbiol. Clin. 2013, 31, 402.
| Crossref | GoogleScholarGoogle Scholar | 23684390PubMed |
[64] V. Dogra, G. Kaur, S. Jindal, R. Kumar, S. Kumar, N. Kumar Singhal, Sci. Total Environ. 2019, 681, 350.
| Crossref | GoogleScholarGoogle Scholar | 31117016PubMed |
[65] D. Sun, D. Xu, C. Yang, J. Chen, M. B. Shahzad, Z. Sun, J. Zhao, T. Gu, K. Yang, G. Wang, Mater. Sci. Eng. 2016, C69, 744.
| Crossref | GoogleScholarGoogle Scholar |
[66] C. Socolsky, M. E. Arena, Y. Asakawa, A. Bardon, J. Nat. Prod. 2010, 73, 1751.
| Crossref | GoogleScholarGoogle Scholar | 21043474PubMed |
[67] Z. A. Mirani, S. Naz, F. Khan, M. Aziz, M. N. Khan, S. I. Khan, J. Antibiot. 2017, 70, 115.
| 27353168PubMed |
[68] K. K. Jefferson, FEMS Microbiol. Lett. 2004, 236, 163.
| Crossref | GoogleScholarGoogle Scholar | 15251193PubMed |
[69] T. Garrett, M. Bhakoo, Z. Zhang, Prog. Nat. Sci. 2008, 18, 1049.
| Crossref | GoogleScholarGoogle Scholar |
[70] Z. H. Chohan, M. Arif, M. A. Akhtar, C. T. Supuran, Bioinorg. Chem. Appl. 2006, 2006, 83131.
| Crossref | GoogleScholarGoogle Scholar |
[71] B. Mohan, A. Jana, N. Das, S. Bharti, M. Choudhary, J. Mol. Struct. 2018, 1171, 94.
| Crossref | GoogleScholarGoogle Scholar |