Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

[FeII(L)2][TCNQF4]2: A Redox-Active Double Radical Salt

Ian A. Gass https://orcid.org/0000-0001-8951-7847 A B C , Jinzhen Lu A , Ruchika Ojha A , Mousa Asadi A , David W. Lupton https://orcid.org/0000-0002-0958-4298 A , Blaise L. Geoghegan B , Boujemaa Moubaraki A , Lisandra L. Martin https://orcid.org/0000-0003-0486-5813 A , Alan M. Bond https://orcid.org/0000-0002-1113-5205 A and Keith S. Murray A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.

C Corresponding authors. Email: i.gass@brighton.ac.uk; keith.murray@monash.edu

Australian Journal of Chemistry 72(10) 769-777 https://doi.org/10.1071/CH19175
Submitted: 17 April 2019  Accepted: 3 June 2019   Published: 19 July 2019

Abstract

The reaction of [FeII(L)2][BF4]2 with LiTCNQF4 results in the formation of [FeII(L)2][TCNQF4•−]2·2CH3CN (1) (L is the neutral aminoxyl radical ligand 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide; TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane). Single-crystal X-ray diffraction; Raman, Fourier-transform infrared (FTIR) and ultraviolet–visible spectroscopies; and electrochemical studies are all consistent with the presence of a low-spin FeII ion, the neutral radical form (L) of the ligand, and the radical anion TCNQF4. 1 is largely diamagnetic and the electrochemistry shows five well-resolved, diffusion-controlled, reversible one-electron processes.


References

[1]  W. Kaim, B. Schwederski, Coord. Chem. Rev. 2010, 254, 1580.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. J. Weiss, Nature 1964, 202, 83.
         | Crossref | GoogleScholarGoogle Scholar | 14166723PubMed |

[3]  L. Pauling, Nature 1964, 203, 182.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. L. Bren, R. Eisenberg, H. B. Gray, Proc. Natl. Acad. Sci. USA 2015, 112, 13123.
         | Crossref | GoogleScholarGoogle Scholar | 26508205PubMed |

[5]  T. Borowski, P. E. M. Siegbahn, J. Am. Chem. Soc. 2006, 128, 12941.
         | Crossref | GoogleScholarGoogle Scholar | 17002391PubMed |

[6]  M. Y. M. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 1944.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  K. D. Sutherlin, Y. Wasada-Tsutsui, M. M. Mbughuni, M. S. Rogers, K. Park, L. V. Liu, Y. Kwak, M. Srnec, L. H. Böttger, M. Frenette, Y. Yoda, Y. Kobayashi, M. Kurokuzu, M. Saito, M. Seto, M. Hu, J. Zhao, E. E. Alp, J. D. Lipscomb, E. I. Solomon, J. Am. Chem. Soc. 2018, 140, 16495.
         | Crossref | GoogleScholarGoogle Scholar | 30418018PubMed |

[8]  A. W. Rutherford, A. Boussac, P. Faller, Biochim. Biophys. Acta 2004, 1655, 222.
         | Crossref | GoogleScholarGoogle Scholar | 15100035PubMed |

[9]  R. E. Cowley, J. Cirera, M. F. Qayyum, D. Rokhsana, B. Hedman, K. O. Hodgson, D. M. Dooley, E. I. Solomon, J. Am. Chem. Soc. 2016, 138, 13219.
         | Crossref | GoogleScholarGoogle Scholar | 27626829PubMed |

[10]  B. L. Greene, A. T. Taguchi, J. Stubbe, D. G. Nocera, J. Am. Chem. Soc. 2017, 139, 16657.
         | Crossref | GoogleScholarGoogle Scholar | 29037038PubMed |

[11]  C. J. Gartshore, D. W. Lupton, Adv. Synth. Catal. 2010, 352, 3321.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Q. Cao, L. M. Dornan, L. Rogan, N. L. Hughes, M. J. Muldoon, Chem. Commun. 2014, 4524.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B. L. Ryland, S. S. Stahl, Angew. Chem. Int. Ed. 2014, 53, 8824.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  P. J. Chirik, K. Wieghardt, Science 2010, 327, 794.
         | Crossref | GoogleScholarGoogle Scholar | 20150476PubMed |

[15]  A. Caneschi, D. Gatteschi, R. Sessoli, P. Rey, Acc. Chem. Res. 1989, 22, 392.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Caneschi, D. Gatteschi, P. Rey, Prog. Inorg. Chem. 1991, 39, 331.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  I. A. Gass, C. J. Gartshore, D. W. Lupton, B. Moubaraki, A. Nafady, A. M. Bond, J. F. Boas, J. D. Cashion, C. Milsmann, K. Wieghardt, K. S. Murray, Inorg. Chem. 2011, 50, 3052.
         | Crossref | GoogleScholarGoogle Scholar | 21384832PubMed |

[18]  I. A. Gass, S. Tewary, A. Nafady, N. F. Chilton, C. J. Gartshore, M. Asadi, D. W. Lupton, B. Moubaraki, A. M. Bond, J. F. Boas, S. X. Guo, G. Rajaraman, K. S. Murray, Inorg. Chem. 2013, 52, 7557.
         | Crossref | GoogleScholarGoogle Scholar | 23777336PubMed |

[19]  S. Tewary, I. A. Gass, K. S. Murray, G. Rajaraman, Eur. J. Inorg. Chem. 2013, 1024.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  I. A. Gass, S. Tewary, G. Rajaraman, M. Asadi, D. W. Lupton, B. Moubaraki, G. Chastanet, J.-F. Létard, K. S. Murray, Inorg. Chem. 2014, 53, 5055.
         | Crossref | GoogleScholarGoogle Scholar | 24805925PubMed |

[21]  I. A. Gass, M. Asadi, D. W. Lupton, B. Moubaraki, A. M. Bond, S.-X. Guo, K. S. Murray, Aust. J. Chem. 2014, 67, 1618.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. H. Pedersen, B. L. Geoghegan, G. S. Nichol, D. W. Lupton, K. S. Murray, J. Martínez-Lillo, I. A. Gass, E. K. Brechin, Dalton Trans. 2017, 5250.
         | Crossref | GoogleScholarGoogle Scholar | 28374882PubMed |

[23]  I. A. Gass, J. Lu, M. Asadi, D. W. Lupton, C. M. Forsyth, B. L. Geoghegan, B. Moubaraki, J. D. Cashion, L. L. Martin, A. M. Bond, K. S. Murray, ChemPlusChem 2018, 83, 658.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T. J. Emge, M. Maxfield, D. O. Cowan, T. J. Kistenmacher, Mol. Cryst. Liq. Cryst. 1981, 65, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. A. O’Kane, R. Clérac, H. Zhao, X. Ouyang, J. R. Galán-Mascarós, R. Heintz, K. R. Dunbar, J. Solid State Chem. 2000, 152, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  T. H. Le, J. Lu, A. M. Bond, L. L. Martin, Inorg. Chim. Acta 2013, 395, 252.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. L. Sutton, B. F. Abrahams, D. M. D’Alessandro, R. W. Elliott, T. A. Hudson, R. Robson, P. M. Usov, CrystEngComm 2014, 16, 5234.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  N. L. Haworth, J. Lu, N. Vo, T. H. Le, C. D. Thompson, A. M. Bond, L. L. Martin, ChemPlusChem 2014, 79, 962.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  P. J. Kunkeler, P. J. van Koningsbruggen, J. P. Cornelissen, A. N. van der Horst, A. M. van der Kraan, A. L. Spek, J. G. Haasnoot, J. Reedijk, J. Am. Chem. Soc. 1996, 118, 2190.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164.
         | Crossref | GoogleScholarGoogle Scholar | 23386394PubMed |

[31]  A. J. Bard, R. L. Faulkner, Electrochemical Methods: Fundamentals and Applications (2nd edn) 2001 (John Wiley & Sons: New York, NY).

[32]  J. Lu, T. H. Le, D. A. K. Traore, M. Wilce, A. M. Bond, L. L. Martin, J. Org. Chem. 2012, 77, 10568.
         | Crossref | GoogleScholarGoogle Scholar | 23153174PubMed |

[33]  G. M. Sheldrick, SHELX-97, Program for the Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany).