Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ionic Liquids – Further Progress on the Fundamental Issues

Mega Kar A , Natalia V. Plechkova B , Kenneth R. Seddon B D , Jennifer M. Pringle C and Douglas R. MacFarlane A E
+ Author Affiliations
- Author Affiliations

A Australian Research Council (ARC) Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, UK.

C Deakin University, Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Burwood, Vic. 3125, Australia.

D Deceased.

E Corresponding author. Email: douglas.macfarlane@monash.edu




Dr Mega Kar completed her undergraduate degree with honours at The University of Melbourne in 2008. She then went on to study for her doctor of philosophy (Ph.D.) degree at Monash University (2012–2015). Dr Kar is currently a Laureate Research Fellow at Monash University, lecturing and specialising in IL synthesis and electrochemistry and working on electrodeposition and metal batteries. Along with Professor Douglas MacFarlane and Associate Professor Jennifer Pringle, she has co-authored a textbook titled ‘Fundamentals of Ionic Liquid Science – From Chemistry to Applications’, published in 2017.



Dr Natalia V. Plechkova obtained her B.Sc. and M.Sc. degrees in chemical engineering from the Russian Mendeleev University of Chemical Technology, Moscow, and completed her Ph.D. degree under the guidance of Professor Kenneth Seddon. Since then she has been a research fellow and project manager in the QUILL Research Centre, focussing on various aspects of ionic liquids, including their synthesis, characterisation, and applications.



Professor Kenneth R. Seddon OBE (1950–2018) was Chair of Inorganic Chemistry at the Queen’s University of Belfast and director of the Queen’s University Ionic Liquid Laboratories (QUILL) Research Centre, an industrial–academic consortium which was awarded the 2006 Queen’s Anniversary Prize for Higher and Further Education and had been involved with implementing a full-scale process for removing mercury from natural gas streams with Petronas Chemicals. During his career, Professor Seddon published 404 papers and over 40 patents.



Associate Professor Jennifer Pringle is a Senior Research Fellow in the Institute for Frontier Materials at Deakin University, Melbourne, and a chief investigator in the ARC Centre of Excellence for Electromaterials Science. She received her degree and Ph.D. from The University of Edinburgh in Scotland before moving to Monash University in Melbourne, Australia, in 2002. From 2008 to 2012, she held an ARC QEII Fellowship, investigating the use of ionic electrolytes for dye-sensitised solar cells. Associate Professor Pringle moved to Deakin University in 2013. There she leads research into the development and use of ionic liquids and organic ionic plastic crystals for applications including thermal energy harvesting, CO2 separation membranes, and lithium batteries.



Professor Doug MacFarlane is an Australian Laureate Fellow and leader of the Energy Program in the Australian Centre for Electromaterials Science. He is one of the pioneers of the field of ionic liquids and his group, along with collaborators in Australia and worldwide, has published more than 650 papers and 30 patents. Professor MacFarlane was a B.Sc.(Hons) graduate of Victoria University Wellington and obtained his Ph.D. degree from Purdue University. He was appointed Professor of Chemistry at Monash University in 1995. He was elected to the Australian Academy of Science in 2007 and was awarded the Academy’s Craig Medal for achievement in chemistry in 2018. He was elected to the Australian Academy of Technological Sciences and Engineering in 2009. He is an International Fellow of the Queen’s University Belfast and a Visiting Professor of the Chinese Academy of Sciences.

Australian Journal of Chemistry 72(2) 3-10 https://doi.org/10.1071/CH18541
Submitted: 1 November 2018  Accepted: 22 November 2018   Published: 18 December 2018

Abstract

Ionic liquids continue to challenge conventional descriptions of liquids and their behaviour. Indeed, the ever-increasing variety of ionic liquid compounds has generated a need for multiple descriptions of the different molecular families, including protic, aprotic, solvate, and metal coordination complex families of ionic liquids, that exhibit very different behaviours. Within families, the balance of long-range electrostatic and short-range dispersion forces plays out in nanoscale heterogeneity that also impacts markedly on properties. In this perspective, we highlight some of the issues in the field that continue to deserve further investigation and development at both the experimental and fundamental levels. We also propose a set of nomenclature abbreviations in an attempt to systematise the plethora of confusing abbreviations that appear in the field. The distinction between ionic liquids, ionic liquid–solvent mixtures, and deep eutectic solvents is also discussed.


References

[1]  T. Welton, Biophys. Rev. 2018, 10, 691.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Tamura, T. Hachida, K. Yoshida, N. Tachikawa, K. Dokko, M. Watanabe, J. Power Sources 2010, 195, 6095.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Mandai, K. Yoshida, K. Ueno, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2014, 16, 8761.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Fujita, M. Kajiyama, Y. Liu, N. Nakamura, H. Ohno, Chem. Commun. 2016, 13491.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. Haberler, C. Schröder, O. Steinhauser, J. Chem. Theory Comput. 2012, 8, 3911.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Prodius, A. V. Mudring, Coord. Chem. Rev. 2018, 363, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. Theivaprakasam, D. R. MacFarlane, S. Mitra, Electrochim. Acta 2015, 180, 737.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. Qu, D. G. Bansal, B. Yu, J. Y. Howe, H. Luo, S. Dai, H. Li, P. J. Blau, B. G. Bunting, G. Mordukhovich, D. J. Smolenski, ACS Appl. Mater. Interfaces 2012, 4, 997.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. MacFarlane, A. L. Chong, M. Forsyth, M. Kar, V. Ranganathan, A. Somers, J. M. Pringle, Faraday Discuss. 2017, 206, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Forsyth, G. M. A. Girard, A. Basile, M. Hilder, D. R. MacFarlane, F. Chen, P. C. Howlett, Electrochim. Acta 2016, 220, 609.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D. Al-Masri, R. Yunis, A. F. Hollenkamp, J. M. Pringle, Chem. Commun. 2018, 3660.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. R. MacFarlane, K. R. Seddon, Aust. J. Chem. 2007, 60, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. J. Baranyai, G. B. Deacon, D. R. MacFarlane, J. M. Pringle, J. L. Scott, Aust. J. Chem. 2004, 57, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. G. Cassity, A. Mirjafari, N. Mobarrez, K. J. Strickland, R. A. O’Brien, J. H. Davis, Chem. Commun. 2013, 7590.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. J. Liaw, C. C. Chen, Y. C. Chen, J. R. Chen, S. K. Huang, S. N. Liu, Green Chem. 2012, 14, 2001.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  R. Vijayaraghavan, M. Surianarayanan, V. Armel, D. R. MacFarlane, V. P. Sridhar, Chem. Commun. 2009, 6297.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  G. G. Eshetu, S. Jeong, P. Pandard, A. Lecocq, G. Marlair, S. Passerini, ChemSusChem 2017, 10, 3146.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  W.-q. Feng, Y.-h. Lu, Y. Chen, Y.-w. Lu, T. Yang, J. Therm. Anal. Calorim. 2016, 125, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Jordan, N. Gathergood, Chem. Soc. Rev. 2015, 44, 8200.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. G. Gore, L. Myles, M. Spulak, I. Beadham, T. M. Garcia, S. J. Connon, N. Gathergood, Green Chem. 2013, 15, 2747.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. G. Freire, C. M. S. S. Neves, I. M. Marrucho, J. A. P. Coutinho, A. M. Fernandes, J. Phys. Chem. A 2010, 114, 3744.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. Ostadjoo, P. Berton, J. L. Shamshina, R. D. Rogers, Toxicol. Sci. 2018, 161, 249.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. B. McEwen, H. L. Ngo, K. LeCompte, J. L. Goldman, J. Electrochem. Soc. 1999, 146, 1687.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. Yoon, P. C. Howlett, A. S. Best, M. Forsyth, D. R. MacFarlane, J. Electrochem. Soc. 2013, 160, A1629.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  G. M. A. Girard, M. Hilder, N. Dupre, D. Guyomard, D. Nucciarone, K. Whitbread, S. Zavorine, M. Moser, M. Forsyth, D. R. MacFarlane, P. C. Howlett, ACS Appl. Mater. Interfaces 2018, 10, 6719.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. Theivaprakasam, J. Wu, J. C. Pramudita, N. Sharma, D. R. MacFarlane, S. Mitra, J. Phys. Chem. C 2017, 121, 15630.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  O. Tutusaus, R. Mohtadi, T. S. Arthur, F. Mizuno, E. G. Nelson, Y. V. Sevryugina, Angew. Chem. Int. Ed. 2015, 54, 7900.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. Minella Bonatto, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, ACS Energy Lett. 2018, 3, 2005.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Energy Environ. Sci. 2015, 8, 2574.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Wang, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 2308.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  F. Zhou, A. Izgorodin, R. K. Hocking, L. Spiccia, D. R. MacFarlane, Adv. Energy Mater. 2012, 2, 1013.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. R. Mazid, U. Divisekera, W. Yang, V. Ranganathan, D. R. MacFarlane, C. Cortez-Jugo, W. Cheng, Chem. Commun. 2014, 13457.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 2009, 11, 4962.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Watanabe, H. Tokuda, in Ionic Liquids Further UnCOILed: Critical Expert Overviews (Eds N. V. Plechkova, K. R. Seddon) 2014, pp. 217–234 (John Wiley & Sons, Inc.: Hoboken, NJ).

[37]  K. Ueno, H. Tokuda, M. Watanabe, Phys. Chem. Chem. Phys. 2010, 12, 1649.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  J. Stoimenovski, E. I. Izgorodina, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2010, 12, 10341.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  B. Kirchner, F. Malberg, D. S. Firaha, O. Hollóczki, J. Phys. Condens. Matter 2015, 27, 463002.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  K. R. Harris, J. Phys. Chem. B 2010, 114, 9572.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  O. Hollóczki, F. Malberg, T. Welton, B. Kirchner, Phys. Chem. Chem. Phys. 2014, 16, 16880.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  B. Kirchner, F. Malberg, D. S. Firaha, O. Hollóczki, J. Phys. Condens. Matter 2015, 27, 463002.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  R. Ishizuka, N. Matubayasi, J. Comput. Chem. 2017, 38, 2559.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  K. J. Fraser, D. R. MacFarlane, Aust. J. Chem. 2009, 62, 309.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  K. Fumino, R. Ludwig, J. Mol. Liq. 2014, 192, 94.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  H. V. R. Annapureddy, H. K. Kashyap, P. M. De Biase, C. J. Margulis, J. Phys. Chem. B 2010, 114, 16838.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  B. Rotenberg, M. Salanne, J. Phys. Chem. Lett. 2015, 6, 4978.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  R. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. Abai, M. P. Atkins, A. Hassan, J. D. Holbrey, Y. Kuah, P. Nockemann, A. A. Oliferenko, N. V. Plechkova, S. Rafeen, A. A. Rahman, R. Ramli, S. M. Shariff, K. R. Seddon, G. Srinivasan, Y. Zou, Dalton Trans. 2015, 8617.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  C. S. Santos, S. Baldelli, Chem. Soc. Rev. 2010, 39, 2136.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  A. Cook, K. Ueno, M. Watanabe, R. Atkin, H. Li, J. Phys. Chem. C 2017, 121, 15728.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 2017, 117, 6755.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  S. Perkin, Phys. Chem. Chem. Phys. 2012, 14, 5052.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  D. R. MacFarlane, M. Kar, J. M. Pringle, Fundamentals of Ionic Liquids: From Chemistry to Applications 2017 (Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim).