Thermal Conductivity Enhancement Phenomena in Ionic Liquid-Based Nanofluids (Ionanofluids)
Kamil Oster A B F , Christopher Hardacre A B F , Johan Jacquemin B C , Ana P. C. Ribeiro D and Abdulaziz Elsinawi EA The University of Manchester, School of Chemical Engineering & Analytical Science, Sackville Street, M13 9PL, Manchester, UK.
B Queen’s University Belfast, School of Chemistry & Chemical Engineering, Stranmillis Road, BT9 5AG, Belfast, UK.
C Université de Tours, Laboratoire PCM2E, Parc de Grandmont 37200, Tours, France.
D Universidade de Lisboa, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal.
E King Faisal University, Materials Engineering Department, College of Engineering, Al-Hasa, 31982, Hofuf, Saudi Arabia.
F Corresponding authors. Email: kamil.oster@manchester.ac.uk; c.hardacre@manchester.ac.uk
Australian Journal of Chemistry 72(2) 21-33 https://doi.org/10.1071/CH18116
Submitted: 16 March 2018 Accepted: 26 April 2018 Published: 28 May 2018
Abstract
The dispersion of nanoparticles into ionic liquids leads to enhancement of their thermal conductivity. Several papers report on various enhancement values, whereas the comparison between these values with those from theoretical calculations is not always performed. These thermal conductivity enhancements are desired due to their beneficial impact on heat transfer performance in processes requiring the utilisation of heat transfer fluids. Moreover, on the one hand, the theoretical modelling of these enhancements might lead to an easier, cheaper, and faster heat transfer unit design, which could be an enormous advantage in the design of novel industrial applications. On the other hand, it significantly impacts the enhancement mechanism. The aim of this work is to discuss the enhancement of thermal conductivity caused by the dispersion of nanoparticles in ionic liquids, including the analysis of their errors, followed by its theoretical modelling. Furthermore, a comparison between the data reported herein with those available in the literature is carried out following the reproducibility of the thermal conductivity statement. The ionic liquids studied were 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, and 1-hexyl-3-methylimidazolium hexafluorophosphate, while carbon nanotubes, boron nitride, and graphite were selected as nanoparticles to be dispersed in the investigated ionic liquids to design novel heat transfer fluids.
References
[1] X.-Q. Wang, A. S. Mujumdar, Int. J. Therm. Sci. 2007, 46, 1.| Crossref | GoogleScholarGoogle Scholar |
[2] S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 2009, 52, 3187.
| Crossref | GoogleScholarGoogle Scholar |
[3] V. Trisaksri, S. Wongwises, Renew. Sustain. Energy Rev. 2007, 11, 512.
| Crossref | GoogleScholarGoogle Scholar |
[4] J. M. P. França, C. A. Nieto de Castro, M. M. Lopes, V. M. B. Nunes, J. Chem. Eng. Data 2009, 54, 2569.
| Crossref | GoogleScholarGoogle Scholar |
[5] V. M. B. Nunes, M. J. V. Lourenço, F. J. V. Santos, C. A. Nieto de Castro, J. Chem. Eng. Data 2003, 48, 446.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. J. F. Mendonca, C. A. Nieto de Castro, M. J. Assael, W. A. Wakeham, Rev. Port. Quim. 1981, 23, 7.
[7] J. Singh, Heat Transfer Fluids and Systems for Process and Energy Applications 1985 (Office of Scientific and Technical Information: New York, NY).
[8] N. Canter, Tribol. Lubr. Technol. 2009, 65, 28.
[9] M. Musiał, K. Malarz, A. Mrozek-Wilczkiewicz, R. Musiol, E. Zorębski, M. Dzida, ACS Sustain. Chem.& Eng. 2017, 5, 11024.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. M. Blake, L. Moens, M. J. Hale, H. Price, D. Kearney, U. Herrmann, in Proceedings of the 11th SolarPACES International Symposium On Concentrating Solar Power and Chemical Energy Technologies (Eds A. Steinfeld, N. Lior) 2002 (Energy: Zurich).
[11] M. E. Van Valkenburg, R. L. Vaughn, M. Williams, J. S. Wilkes, Thermochim. Acta 2005, 425, 181.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. H. Davis, Jr, C. M. Gordon, C. Hilgers, P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2003 (Wiley-VCH: New York, NY).
[13] M. Freemantle, An Introduction to Ionic Liquids 2010 (Royal Society of Chemistry: London).
[14] M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, Nature 2006, 439, 831.
| Crossref | GoogleScholarGoogle Scholar |
[15] E. A. Chernikova, L. M. Glukhov, V. G. Krasovskiy, L. M. Kustov, M. G. Vorobyeva, A. A. Koroteev, Russ. Chem. Rev. 2015, 84, 875.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. U. S. Choi, J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles 1995 (Argonne National Laboratory: Lemont, IL).
[17] J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, S. Lee, MRS Online Proc. Libr. 1996, 457, 3.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. M. S. Murshed, K. C. Leong, C. Yang, Int. J. Therm. Sci. 2005, 44, 367.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. U. S. Choi, Z. G. Zhang, Wl. Yu, F. E. Lockwood, E. A. Grulke, Appl. Phys. Lett. 2001, 79, 2252.
| Crossref | GoogleScholarGoogle Scholar |
[20] C. A. Nieto de Castro, M. J. V. Lourenço, A. P. C. Ribeiro, E. Langa, S. I. C. Vieira, P. Goodrich, C. Hardacre, J. Chem. Eng. Data 2010, 55, 653.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. M. P. França, F. Reis, S. I. C. Vieira, M. J. V. Lourenço, F. J. V. Santos, C. A. N. De Castro, A. A. H. Padua, J. Chem. Thermodyn. 2014, 79, 248.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. M. P. França, S. I. C. Vieira, M. J. V. Lourenço, S. M. S. Murshed, C. A. Nieto de Castro, J. Chem. Eng. Data 2013, 58, 467.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. Yu, D. M. France, J. L. Routbort, S. U. S. Choi, Heat Transf. Eng. 2008, 29, 432.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. Özerinç, S. Kakaç, A. G. Yazıcıoğlu, Microfluid. Nanofluidics 2010, 8, 145.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. Kleinstreuer, Y. Feng, Nanoscale Res. Lett. 2011, 6, 229.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. França, C. A. N. de Castro, A. A. H. Padua, Phys. Chem. Chem. Phys. 2017, 19, 17075.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. C. Maxwell, A Treatise on Electricity and Magnetism 1881 (Clarendon Press: London).
[28] R. L. Hamilton, O. K. Crosser, Ind. Eng. Chem. Fundam. 1962, 1, 187.
| Crossref | GoogleScholarGoogle Scholar |
[29] W. R. Tinga, W. A. G. Voss, D. F. Blossey, J. Appl. Phys. 1973, 44, 3897.
| Crossref | GoogleScholarGoogle Scholar |
[30] K. C. Leong, C. Yang, S. M. S. Murshed, J. Nanopart. Res. 2006, 8, 245.
| Crossref | GoogleScholarGoogle Scholar |
[31] S. M. S. Murshed, K. C. Leong, C. Yang, Int. J. Therm. Sci. 2008, 47, 560.
| Crossref | GoogleScholarGoogle Scholar |
[32] E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, J. V. Selinger, Phys. Rev. E 2007, 76, 61203.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. Atashrouz, M. Mozaffarian, G. Pazuki, Ind. Eng. Chem. Res. 2015, 54, 8600.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskey, G. A. Baker, Green Chem. 2007, 9, 449.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. J. Earle, C. M. Gordon, N. V. Plechkova, K. R. Seddon, T. Welton, Anal. Chem. 2007, 79, 758.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. D. Holbrey, W. M. Reichert, R. P. Swatloski, G. A. Broker, W. R. Pitner, K. R. Seddon, R. D. Rogers, Green Chem. 2002, 4, 407.
| Crossref | GoogleScholarGoogle Scholar |
[37] J. D. Holbrey, K. R. Seddon, R. Wareing, Green Chem. 2001, 3, 33.
| Crossref | GoogleScholarGoogle Scholar |
[38] K. Oster, P. Goodrich, J. Jacquemin, C. Hardacre, A. P. C. Ribeiro, A. Elsinawi, J. Chem. Thermodyn. 2018, 121, 97.
| Crossref | GoogleScholarGoogle Scholar |
[39] A. P. C. Ribeiro, S. I. C. Vieira, P. Goodrich, C. Hardacre, M. J. V. Lourenço, C. A. de Castro, J. Nanofluids 2013, 2, 55.
| Crossref | GoogleScholarGoogle Scholar |
[40] C. Zhi, Y. Xu, Y. Bando, D. Golberg, ACS Nano 2011, 5, 6571.
| Crossref | GoogleScholarGoogle Scholar |
[41] G. Żyła, A. Witek, M. Gizowska, J. Appl. Phys. 2015, 117, 14302.
| Crossref | GoogleScholarGoogle Scholar |
[42] Q. Wan, Y. Jin, P. Sun, Y. Ding, Procedia Eng. 2015, 102, 1038.
| Crossref | GoogleScholarGoogle Scholar |
[43] K. Oster, J. Jacquemin, C. Hardacre, A. P. C. Ribeiro, A. Elsinawi, J. Chem. Thermodyn. 2018, 118, 1.
| Crossref | GoogleScholarGoogle Scholar |
[44] K. Oster, C. Hardacre, J. Jacquemin, A. P. C. Ribeiro, A. Elsinawi, J. Mol. Liq. 2018, 253, 326.
| Crossref | GoogleScholarGoogle Scholar |
[45] J. Fan, L. Wang, J. Heat Transfer 2011, 133, 40801.
| Crossref | GoogleScholarGoogle Scholar |
[46] R. Taylor, Philos. Mag. 1966, 13, 157.
| Crossref | GoogleScholarGoogle Scholar |
[47] E. K. Sichel, R. E. Miller, M. S. Abrahams, C. J. Buiocchi, Phys. Rev. B 1976, 13, 4607.
| Crossref | GoogleScholarGoogle Scholar |
[48] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Physica B 2002, 323, 67.
| Crossref | GoogleScholarGoogle Scholar |
[49] R. Ge, C. Hardacre, P. Nancarrow, D. W. Rooney, J. Chem. Eng. Data 2007, 52, 1819.
| Crossref | GoogleScholarGoogle Scholar |
[50] H. Chen, Y. He, J. Zhu, H. Alias, Y. Ding, P. Nancarrow, C. Hardacre, D. Rooney, C. Tan, Int. J. Heat Fluid Flow 2008, 29, 149.
| Crossref | GoogleScholarGoogle Scholar |
[51] A. P. Fröba, M. H. Rausch, K. Krzeminski, D. Assenbaum, P. Wasserscheid, A. Leipertz, Int. J. Thermophys. 2010, 31, 2059.
| Crossref | GoogleScholarGoogle Scholar |
[52] Q.-L. Chen, K.-J. Wu, C.-H. He, J. Chem. Eng. Data 2013, 58, 2058.
| Crossref | GoogleScholarGoogle Scholar |
[53] D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Int. J. Thermophys. 2007, 28, 1147.
| Crossref | GoogleScholarGoogle Scholar |
[54] N. Zhao, J. Jacquemin, R. Oozeerally, V. Degirmenci, J. Chem. Eng. Data 2016, 61, 2160.
| Crossref | GoogleScholarGoogle Scholar |
[55] C.-J. Ho, M. W. Chen, Z. W. Li, Int. J. Heat Mass Transfer 2008, 51, 4506.
| Crossref | GoogleScholarGoogle Scholar |
[56] E. Abu-Nada, Int. J. Heat Fluid Flow 2009, 30, 679.
| Crossref | GoogleScholarGoogle Scholar |
[57] C. N. de Castro, A. P. C. Ribeiro, S. I. C. Vieira, J. M. P. França, M. J. V. Lourenço, F. V. Santos, S. M. S. Murshed, P. Goodrich, C. Hardacre, in Ionic Liquids – New Aspects for the Future (Ed. J.-i. Kadokawa) 2013, pp. 165–194 (InTech: London).
[58] R. C. Zeller, R. O. Pohl, Phys. Rev. B 1971, 4, 2029.
| Crossref | GoogleScholarGoogle Scholar |
[59] I. H. El-Sayed, X. Huang, M. A. El-Sayed, Nano Lett. 2005, 5, 829.
| Crossref | GoogleScholarGoogle Scholar |
[60] R. Marchiori, in Nanostructures (Eds O. N. Oliveira, Jr, M. Ferreira, A. Da Róz, F. de Lima Leite) 2016, Ch. 8, pp. 209–232 (William Andrew Applied Science Publishers: New York, NY).
[61] V. K. Paruchuri, A. V. Nguyen, J. D. Miller, Colloids Surf. A 2004, 250, 519.
| Crossref | GoogleScholarGoogle Scholar |
[62] W. Lei, V. N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Nat. Commun. 2015, 6, 8849.
| Crossref | GoogleScholarGoogle Scholar |
[63] B. White, S. Banerjee, S. O’Brien, N. J. Turro, I. P. Herman, J. Phys. Chem. C 2007, 111, 13684.
| Crossref | GoogleScholarGoogle Scholar |
[64] B. Ouyang, J. Song, Appl. Phys. Lett. 2013, 103, 102401.
| Crossref | GoogleScholarGoogle Scholar |
[65] W. Yu, H. Xie, J. Nanomater. 2012, 2012, 435873.
| Crossref | GoogleScholarGoogle Scholar |
[66] Y. Li, S. Tung, E. Schneider, S. Xi, Powder Technol. 2009, 196, 89.
| Crossref | GoogleScholarGoogle Scholar |
[67] Z. Haddad, C. Abid, H. F. Oztop, A. Mataoui, Int. J. Therm. Sci. 2014, 76, 168.
| Crossref | GoogleScholarGoogle Scholar |
[68] S. Berber, Y.-K. Kwon, D. Tománek, Phys. Rev. Lett. 2000, 84, 4613.
| Crossref | GoogleScholarGoogle Scholar |