Controlling Grafting from Aryldiazonium Salts: A Review of Methods for the Preparation of Monolayers
Tony Breton A C and Alison J. Downard B CA MOLTECH-Anjou, Université d’Angers, UMR CNRS 6200, 2 Boulevard Lavoisier, 49045 Angers, France.
B MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
C Corresponding authors. Email: tony.breton@univ-angers.fr; alison.downard@canterbury.ac.nz
Tony Breton was born in La Rochelle (France) in 1977. He received his Ph.D. in organic electrosynthesis from the University of Poitiers in 2004. After a one-year post-doctoral research study on the electrochemical modification of surfaces with Professor Daniel Belanger (Montreal - Canada), he joined the MOLTECH-Anjou laboratory at the University of Angers (France) where he is currently Assistant Professor. His current work concerns the elaboration and characterisation of functionalised conductive surfaces with the aim of establishing controlled structure–property relationships. |
Alison Downard is Professor of Chemistry at the University of Canterbury, New Zealand. She has an Honorary Doctorate from the Université de Rennes, France, and is a Fellow of the Royal Society of New Zealand. Alison gained her Ph.D. at the University of Otago, New Zealand, and undertook post-doctoral research at the University of Southampton with Professor Derek Pletcher and at UNC-Chapel Hill with Professor T. J. Meyer before taking up her position at the University of Canterbury. She has broad ranging interests in electrochemistry; her current major focus is on electrochemistry for surface modification. |
Australian Journal of Chemistry 70(9) 960-972 https://doi.org/10.1071/CH17262
Submitted: 15 May 2017 Accepted: 6 July 2017 Published: 9 August 2017
Abstract
Surface modification by grafting from aryldiazonium salts has been widely studied and applied to many substrates as a simple and versatile method for preparing strongly adherent organic coatings. Unless special precautions or conditions are used, the usual film structure is a loosely packed disordered multilayer; however, over the past decade, attention has been paid to establishing strategies for grafting just a monolayer of modifiers to the surface. To date, four general approaches to monolayer preparation have emerged: use of aryldiazonium ions with cleavable protection groups; use of aryldiazonium ions with steric constraints; grafting in the presence of a radical scavenger; and grafting from ionic liquids. This review describes these approaches, illustrates some of their applications, and highlights the advantages and disadvantages of each.
References
[1] D. Bélanger, J. Pinson, Chem. Soc. Rev. 2011, 40, 3995.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Delamar, R. Hitmi, J. Pinson, J. M. Savéant, J. Am. Chem. Soc. 1992, 114, 5883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFCqu7o%3D&md5=3bc493d79aa329914227188b221f5a92CAS |
[3] P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, S. Verneyre, Chem. Mater. 2007, 19, 4570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Sksrg%3D&md5=5780ed33e21d218dd3acaa5324e8aa0fCAS |
[4] T. Menanteau, M. Dias, E. Levillain, A. J. Downard, T. Breton, J. Phys. Chem. C 2016, 120, 4423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFers78%3D&md5=8ce30643b275c097e90540d716d5c0f9CAS |
[5] L. T. Nielsen, K. H. Vase, M. D. Dong, F. Besenbacher, S. U. Pedersen, K. Daasbjerg, J. Am. Chem. Soc. 2007, 129, 1888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ahtg%3D%3D&md5=68644be64c1adf3db47d2d4de540bbdaCAS |
[6] K. Malmos, M. D. Dong, S. Pillai, P. Kingshott, F. Besenbacher, S. U. Pedersen, K. Daasbjerg, J. Am. Chem. Soc. 2009, 131, 4928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKnur0%3D&md5=b3d3d6261bf14361ef9ec208c76e52adCAS |
[7] J. M. Chretien, M. A. Ghanem, P. N. Bartlett, J. D. Kilburn, Chem. – Eur. J. 2008, 14, 2548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVejtbs%3D&md5=178eb5513561d029028968f481cb2b36CAS |
[8] L. Lee, Y. R. Leroux, P. Hapiot, A. J. Downard, Langmuir 2015, 31, 5071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFagur4%3D&md5=1352eccf2996b5967e44615465cf105fCAS |
[9] V. Q. Nguyen, X. Sun, F. Lafolet, J.-F. Audibert, F. Miomandre, G. Lemercier, F. Loiseau, J.-C. Lacroix, J. Am. Chem. Soc. 2016, 138, 9381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFyitLjI&md5=69404a012f54ee4dc238fee8be5c079bCAS |
[10] P. A. Brooksby, A. J. Downard, Langmuir 2004, 20, 5038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVCktro%3D&md5=deb6769896a6187b897280b66262e6baCAS |
[11] M. G. Paulik, P. A. Brooksby, A. D. Abell, A. J. Downard, J. Phys. Chem. C 2007, 111, 7808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFSjt7k%3D&md5=4685816659051c8ec110feabaef7ca36CAS |
[12] Y. R. Leroux, H. Fei, J. M. Noel, C. Roux, P. Hapiot, J. Am. Chem. Soc. 2010, 132, 14039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtrfI&md5=6d363934ec87b021717be0c5516b2bb4CAS |
[13] L. Lee, H. F. Ma, P. A. Brooksby, S. A. Brown, Y. R. Leroux, P. Hapiot, A. J. Downard, Langmuir 2014, 30, 7104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVSjs78%3D&md5=20d25b9e8d8213fbc9e3417dfaee9111CAS |
[14] A. Mattiuzzi, I. Jabin, C. Mangeney, C. Roux, O. Reinaud, L. Santos, J. F. Bergamini, P. Hapiot, C. Lagrost, Nat. Commun. 2012, 3, 1130.
[15] F. Anariba, S. H. DuVall, R. L. McCreery, Anal. Chem. 2003, 75, 3837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12nur4%3D&md5=2f7edfc68cd98926c73f8e1a783aad31CAS |
[16] S. Ranganathan, R. L. McCreery, Anal. Chem. 2001, 73, 893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvV2ntw%3D%3D&md5=6d9d5ca24af49c18e75ef445f2f2b661CAS |
[17] C. Combellas, F. Kanoufi, J. Pinson, F. I. Podvorica, J. Am. Chem. Soc. 2008, 130, 8576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Witrg%3D&md5=a17f6173ab023c398fd5a4189c046b08CAS |
[18] C. Combellas, D. E. Jiang, F. Kanoufi, J. Pinson, F. I. Podvorica, Langmuir 2009, 25, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmtr7L&md5=ca2ee61d8778af15ebfe8849f165da5aCAS |
[19] Y. R. Leroux, P. Hapiot, Chem. Mater. 2013, 25, 489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWrurc%3D&md5=e446d73294bf0cc6b8c1d8c3f60f8546CAS |
[20] W. J. Liu, T. D. Tilley, Langmuir 2015, 31, 1189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt12l&md5=1bdb60c324132af6f7157f271ffda8a7CAS |
[21] A. Hayat, J. L. Marty, A. E. Radi, Electroanalysis 2012, 24, 1446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslKntb8%3D&md5=fa17c0a7e585e07c400a29324d64774fCAS |
[22] T. Matsubara, M. Ujie, T. Yamamoto, M. Akahori, Y. Einaga, T. Sato, Proc. Natl. Acad. Sci. USA 2016, 113, 8981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ehurbP&md5=0488dfd516b3c1813ade0b7345955554CAS |
[23] P. J. Wei, G. Q. Yu, Y. Naruta, J. G. Liu, Angew. Chem. Int. Ed. 2014, 53, 6659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXot1SitLc%3D&md5=0c2da3767c30e57abd540f6ccd910513CAS |
[24] R. C. Wang, T. L. Yin, P. J. Wei, J. G. Liu, RSC Adv. 2015, 5, 66487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Gmu7jP&md5=703dd3af0f4969b15187925a26f8e605CAS |
[25] Y.-T. Xi, P.-J. Wei, R.-C. Wang, J.-G. Liu, Chem. Commun. 2015, 7455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWltLs%3D&md5=b96c5f03bab62cf1a95eabf931e4654bCAS |
[26] K. Natsui, T. Yamamoto, M. Akahori, Y. Einaga, ACS Appl. Mater. Interfaces 2015, 7, 887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVKqsLrJ&md5=9f3f979ab6afaf7196177f3c07a19440CAS |
[27] J. Jalkh, Y. R. Leroux, A. Vacher, D. Lorcy, P. Hapiot, C. Lagrost, J. Phys. Chem. C 2016, 120, 28021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVGqtrzP&md5=9b415e3ad148a377038aa09737ce8f9cCAS |
[28] S. Y. Sayed, A. Bayat, M. Kondratenko, Y. Leroux, P. Hapiot, R. L. McCreery, J. Am. Chem. Soc. 2013, 135, 12972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ojur3E&md5=4b950bb066c53ae1d3468e2257bbb629CAS |
[29] L. Lee, N. R. Gunby, D. L. Crittenden, A. J. Downard, Langmuir 2016, 32, 2626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjtlentrw%3D&md5=d5e0cbe07cc49fa17a323aaed7fcf764CAS |
[30] A. A. S. Gietter, R. C. Pupillo, G. P. A. Yap, T. P. Beebe, J. Rosenthal, D. A. Watson, Chem. Sci. 2013, 4, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKktbfF&md5=3203ba399935338cdb85461ed86f96efCAS |
[31] J. P. Buttress, D. P. Day, J. M. Courtney, E. J. Lawrence, D. L. Hughes, R. J. Blagg, A. Crossley, S. E. Matthews, C. Redshaw, P. C. B. Page, G. G. Wildgoose, Langmuir 2016, 32, 7806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFOktLfL&md5=b4fe2ccac8d2a78fc2c314f16fb4101bCAS |
[32] L. Santos, A. Mattiuzzi, I. Jabin, N. Vandencasteele, F. Reniers, O. Reinaud, P. Hapiot, S. Lhenry, Y. Leroux, C. Lagrost, J. Phys. Chem. C 2014, 118, 15919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSmsLfO&md5=5fb4a22c7607a571a6779944c4505b05CAS |
[33] L. Troian-Gautier, D. E. Martinez-Tong, J. Hubert, F. Reniers, M. Sferrazza, A. Mattiuzzi, C. Lagrost, I. Jabin, J. Phys. Chem. C 2016, 120, 22936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFWqtr3P&md5=a6f76ec62b0d2b9081063e5cc374945fCAS |
[34] L. Lee, P. A. Brooksby, Y. R. Leroux, P. Hapiot, A. J. Downard, Langmuir 2013, 29, 3133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlCgtrg%3D&md5=88ea85d3286b657b767097a4bd60abbcCAS |
[35] J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Lvasenko, W. Vanderlinden, H. Van Gorp, W. Frederickx, G. Lu, K. Tahara, Y. Tobe, H. Uji-i, S. F. L. Mertens, S. De Feyter, ACS Nano 2015, 9, 5520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvVynsL0%3D&md5=a2dd213cbcfea96fbb2c17530ce09b20CAS |
[36] L. Verstraete, J. Greenwood, B. E. Hirsch, S. De Feyter, ACS Nano 2016, 10, 10706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1OnsL7K&md5=a4d881fd598f1e69b5a9e41c9f3045a0CAS |
[37] T. Menanteau, E. Levillain, T. Breton, Chem. Mater. 2013, 25, 2905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVChu7fL&md5=212c2f5996eb1590251df6f6a39d7104CAS |
[38] T. Breton, E. Levillain, T. Menanteau, A. J. Downard, Phys. Chem. Chem. Phys. 2015, 17, 13137.
[39] T. Menanteau, E. Levillain, T. Breton, Langmuir 2014, 30, 7913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslygsL0%3D&md5=57acaec1b5ef441cf4eb40c2c1adb8acCAS |
[40] T. Menanteau, C. Benoît, T. Breton, C. Cougnon, Electrochem. Commun. 2016, 63, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvF2nsg%3D%3D&md5=e1cab90deafa8eec91d406cebe52bf09CAS |
[41] T. Menanteau, S. Dabos-Seignon, E. Levillain, T. Breton, ChemElectroChem 2017, 4, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFCmsb7K&md5=5af6d838c5216f8d913844078fd62a3cCAS |
[42] M. C. R. Gonzalez, A. G. Orive, R. C. Salvarezza, A. H. Creus, Phys. Chem. Chem. Phys. 2016, 18, 1953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWjsrnJ&md5=ad36ea2af8b06dfd96cfd741046e2e84CAS |
[43] M. C. R. Gonzalez, P. Carro, L. Vazquez, A. H. Creus, Phys. Chem. Chem. Phys. 2016, 18, 29218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2mtbbL&md5=beedf0311e39e58f5eac953952096849CAS |
[44] B. K. Price, J. L. Hudson, J. M. Tour, J. Am. Chem. Soc. 2005, 127, 14867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGqs7fP&md5=78e3c98bea57dc059a5c4d7affddac7eCAS |
[45] P. Actis, G. Caulliez, G. Shul, M. Opallo, M. Mermoux, B. Marcus, R. Boukherroub, S. Szunerits, Langmuir 2008, 24, 6327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFSnsLw%3D&md5=288727b1de8e991b66a23421781e1e5aCAS |
[46] J. Ghilane, P. Martin, O. Fontaine, J.-C. Lacroix, H. Randriamahazaka, Electrochem. Commun. 2008, 10, 1060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVGnurg%3D&md5=9d0291b4acb3ae4bae08e018fb4ca00aCAS |
[47] O. Fontaine, J. Ghilane, P. Martin, J.-C. Lacroix, H. Randriamahazaka, Langmuir 2010, 26, 18542.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisr7J&md5=9a64733669edb90102f255a55a2ec05fCAS |
[48] G. Shul, C. A. C. Ruiz, D. Rochefort, P. A. Brooksby, D. Bélanger, Electrochim. Acta 2013, 106, 378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCisrvE&md5=47efbcd7c31372122fac7ec5402edcb3CAS |
[49] J. Carvalho Padilha, J.-M. Noël, J.-F. Bergamini, J. Rault-Berthelot, C. Lagrost, ChemElectroChem 2016, 3, 572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xot1Chuw%3D%3D&md5=d6b6670e1d1477b7427513beb58602efCAS |