Molecular Electrostatic Potential-Based Atoms in Molecules: Shielding Effects and Reactivity Patterns
Anmol Kumar A and Shridhar R. Gadre A BA Department of Chemistry, Indian Institute of Technology–Kanpur, Kanpur-208016, India.
B Corresponding author. Email: gadre@iitk.ac.in
Australian Journal of Chemistry 69(9) 975-982 https://doi.org/10.1071/CH16226
Submitted: 9 April 2016 Accepted: 21 May 2016 Published: 10 June 2016
Abstract
The Atoms in Molecules (AIM) concept based on the zero-flux surface (ZFS) of the gradient of molecular electrostatic potential (MESP) has been recently proposed by the present authors. The nature of MESP-based atomic basins brings out the asymmetric electronic distribution in a molecule. An electron-rich atom among the two bonded atoms is seen to possess a completely closed MESP-based atomic basin. The present article illustrates the nature of atomic basins for a variety of molecules such as BF, BH3, AlCl3, B2H6, and Al2Cl6, and a Lewis acid–base pair, viz. NH3BH3 wherein the electronic distribution is not merely guided by difference in the electronegativity of the atoms. The study also explores some transition metal complexes, viz. Ni(CO)4, Fe(CO)5, Cr(CO)6, Mn2(CO)10, Co2(CO)8, Fe(η5-C5H5)2, Co(η3-C3H5), and Co(η3-C3H5)(CO)3, which show a similar phenomenon of intricate charge transfer among the ligands and the metal centre. The present article employs MESP-based AIM for a qualitative explanation of the shielding or deshielding effects revealed by NMR data as well as susceptibility of an atomic region towards an electrophilic or nucleophilic attack. Because the topographical features of MESP and thus the nature of atomic basins are not very sensitive to the level of theory and basis set, the present article demonstrates the capability of MESP as a consistent and simple tool for the portrayal of asymmetry in molecular charge distribution.
References
[1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory 1994 (Oxford University Press: Oxford).[2] R. F. Bader, Chem. Rev. 1991, 91, 893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWgt7s%3D&md5=c59b5dffa55a01dd72e73af5fff7f0f0CAS |
[3] R. J. Boyd, K. E. Edgecombe, J. Am. Chem. Soc. 1988, 110, 4182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVGrur4%3D&md5=2632d82b794c0a0f1804c9cf64634ff8CAS |
[4] E. Scrocco, J. Tomasi, in Topics in Current Chemistry: New Concepts II (Eds A. Davison, M. J. S. Dewar) 1973, Vol. 42, pp. 95–170 (Springer: Heidelberg).
[5] A. Pullman, B. Pullman, Q. Rev. Biophys. 1981, 14, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvF2is78%3D&md5=bbdc76dafc228dfe06c2f72b4998c77eCAS | 7027300PubMed |
[6] P. Politzer, J. S. Murray, Theor. Chem. Acc. 2002, 108, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFSgs7g%3D&md5=c6093f56b2a04515bef139e268b2001cCAS |
[7] P. Politzer, J. S. Murray, P. Lane, J. Comput. Chem. 2003, 24, 505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWls7w%3D&md5=97be7f0096342f216047f3f0b9a56bafCAS | 12594793PubMed |
[8] J. S. Murray, P. Politzer, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVGlurY%3D&md5=c40090b701f24d2d50bfbed156153331CAS |
[9] S. R. Gadre, R. N. Shirsat, Electrostatics of Atoms and Molecules 2001 (Universities Press: Hyderabad).
[10] R. K. Pathak, S. R. Gadre, J. Chem. Phys. 1990, 93, 1770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlslylsbg%3D&md5=aa97383e4ea5d35fc9ec8561edd778dcCAS |
[11] A. Kumar, S. R. Gadre, N. Mohan, C. H. Suresh, J. Phys. Chem. A 2014, 118, 526.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWnsb7P&md5=8e6cbd25011119562c673e1702dc94dcCAS | 24372481PubMed |
[12] P. Balanarayan, S. R. Gadre, J. Chem. Phys. 2003, 119, 5037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1ChsLY%3D&md5=c393fdc42a63730efb36fd8809dd51e6CAS |
[13] C. H. Suresh, N. Koga, S. R. Gadre, J. Org. Chem. 2001, 66, 6883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVSgtLk%3D&md5=14f44f6994ced7140dca72f111782c7dCAS | 11597205PubMed |
[14] G. Mehta, F. A. Khan, S. R. Gadre, R. N. Shirsat, B. Ganguly, J. Chandrasekhar, Angew. Chem. Int. Ed. Engl. 1994, 33, 1390.
| Crossref | GoogleScholarGoogle Scholar |
[15] R. F. Stewart, J. Chem. Phys. 1969, 51, 4569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXisF2qtw%3D%3D&md5=eb6b534e36e4dccb23a30f1faa3af116CAS |
[16] N. K. Hansen, P. Coppens, Acta Crystallogr. Sect. A: Found. Adv. 1978, 34, 909.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. F. Stewart, Chem. Phys. Lett. 1979, 65, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvVWls78%3D&md5=d5e0a8676549ebfa35b7162915dd99f7CAS |
[18] C. Lecomte, N. Ghermani, V. Pichon-Pesme, M. Souhassou, J. Mol. Struct.: THEOCHEM 1992, 255, 241.
| Crossref | GoogleScholarGoogle Scholar |
[19] N.-E. Ghermani, N. Bouhmaida, C. Lecomte, Acta Crystallogr. Sect. A: Found. Adv. 1993, 49, 781.
| Crossref | GoogleScholarGoogle Scholar |
[20] V. Pichon-Pesme, H. Lachekar, M. Souhassou, C. Lecomte, Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 2000, 56, 728.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrptFKlsg%3D%3D&md5=c4333e222119e5de36f4b800525bf937CAS |
[21] I. Mata, E. Espinosa, E. Molins, S. Veintemillas, W. Maniukiewicz, C. Lecomte, A. Cousson, W. Paulus, Acta Crystallogr. Sect. A: Found. Adv. 2006, 62, 365.
| Crossref | GoogleScholarGoogle Scholar |
[22] I. Mata, E. Molins, E. Espinosa, J. Phys. Chem. A 2007, 111, 9859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1entrw%3D&md5=ba911e1b92b80b7a89624a5ca83330baCAS | 17727276PubMed |
[23] S. R. Gadre, I. H. Shrivastava, J. Chem. Phys. 1991, 94, 4384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFGjtr8%3D&md5=06e1d20f1b985baf42ede51f1edef679CAS |
[24] S. R. Gadre, C. Kölmel, I. H. Shrivastava, Inorg. Chem. 1992, 31, 2279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVahsbg%3D&md5=53e9d312f0f4963b21237397a4de3aa6CAS |
[25] A. Kumar, S. R. Gadre, J. Chem. Theory Comput. 2016, 12, 1705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisFGnu70%3D&md5=144c628813f99e955a874d3fa7aa5e68CAS | 26881455PubMed |
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).
[27] A. Kumar, S. D. Yeole, S. R. Gadre, R. López, J. F. Rico, G. Ramírez, I. Ema, D. Zorrilla, J. Comput. Chem. 2015, 36, 2350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslensrnJ&md5=4103b20cf93ffd210127fd96b95ecc6fCAS | 26505259PubMed |
[28] R. López, J. F. Rico, G. Ramírez, I. Ema, D. Zorrilla, Comput. Phys. Commun. 2009, 180, 1654.
| Crossref | GoogleScholarGoogle Scholar |
[29] R. López, J. F. Rico, G. Ramírez, I. Ema, D. Zorrilla, Comput. Phys. Commun. 2015, 192, 289.
| Crossref | GoogleScholarGoogle Scholar |
[30] F. J. Lovas, D. R. Johnson, J. Chem. Phys. 1971, 55, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXksFKhtb8%3D&md5=679247d6cb682625705d2589b91551b0CAS |
[31] N. Mohan, C. H. Suresh, A. Kumar, S. R. Gadre, Phys. Chem. Chem. Phys. 2013, 15, 18401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2gtr%2FP&md5=c701816d696ba601ea2152d4dce0bac8CAS | 24085157PubMed |
[32] S. Sarmah, A. K. Guha, A. K. Phukan, A. Kumar, S. R. Gadre, Dalton Trans. 2013, 13200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitLrL&md5=cde44a353c78c765f9f22d440ab84542CAS | 23884376PubMed |
[33] A. W. Ehlers, E. J. Baerends, F. M. Bickelhaupt, U. Radius, Chem. – Eur. J. 1998, 4, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1akt7s%3D&md5=99e8b42d40d5dc5b277c5834da96abecCAS |
[34] R. Ettinger, P. Blume, A. P. Jr, P. C. Lauterbur, J. Chem. Phys. 1960, 33, 1597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnvF2ktQ%3D%3D&md5=8358a81f6f3ab2562c79592f0a2bc79dCAS |
[35] D. F. Gaines, R. Schaeffer, F. Tebbe, J. Phys. Chem. 1963, 67, 1937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksl2nsbo%3D&md5=78d7e92410668be009f3c20a4ad953d0CAS |
[36] D. F. Gaines, Inorg. Chem. 1963, 2, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVWjtbs%3D&md5=a5e9b630c5919aff7c2ca85492dc2e05CAS |
[37] S. Sakai, J. Phys. Chem. 1995, 99, 9080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlslyrtr0%3D&md5=fd8d93765d81b89f04039e33608a0cd7CAS |
[38] D. F. Gaines, R. Schaeffer, J. Am. Chem. Soc. 1964, 86, 1505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXnsV2msw%3D%3D&md5=c373d10a5e34189dcbd611c8372af922CAS |
[39] S. R. Gadre, S. S. Pundlik, I. H. Shrivastava, Proc. Indian Acad. Sci. – Chem. Sci. 1994, 106, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVOksrg%3D&md5=6f83c25e09585951ecba815c94e54548CAS |
[40] S. R. Gadre, I. H. Shrivastava, Chem. Phys. Lett. 1993, 204, 350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWhtbg%3D&md5=74ea20a02547d688332b1fb8ca7ad360CAS |
[41] M. Y. Darensbourg, J. C. Deaton, Inorg. Chem. 1981, 20, 1644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktlCmt70%3D&md5=865677afcca864e8c8400d5f46c4b68dCAS |
[42] K. J. Ooms, K. W. Feindel, V. V. Terskikh, R. E. Wasylishen, Inorg. Chem. 2006, 45, 8492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2hurc%3D&md5=936753c002fe1bcd4613383f75f9fd69CAS | 17029359PubMed |
[43] H. C. Canuto, S. J. Heyes, S. Aime, R. Gobetto, F. Napolitano, J. Chem. Soc., Dalton Trans. 2000, 4075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKlsro%3D&md5=87a0a1434cf2eda9b883661fabf30000CAS |
[44] See pp. 27–56 in: F. Mathey, Transition Metal Organometallic Chemistry 2013 (Springer: Singapore).
[45] D. R. van Staveren, N. Metzler-Nolte, Chem. Rev. 2004, 104, 5931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGhs7%2FJ&md5=d7356fff76e401b2ad0738ce78241eb6CAS | 15584693PubMed |
[46] S. R. Gadre, S. A. Kulkarni, C. H. Suresh, I. H. Shrivastava, Chem. Phys. Lett. 1995, 239, 273–281.
| Crossref | GoogleScholarGoogle Scholar |