Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Computation of Electron Delocalization for Extended Cyclic Conjugated Molecules

Suhwan Song A , Minwoo Han A and Eunji Sim A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 120-749, Korea.

B Corresponding author. Email: esim@yonsei.ac.kr

Australian Journal of Chemistry 69(9) 999-1004 https://doi.org/10.1071/CH16183
Submitted: 24 March 2016  Accepted: 28 July 2016   Published: 22 August 2016

Abstract

Cyclic conjugated molecules have relatively planar conformations due to overlap of adjacent π-orbitals of delocalized electrons and which is strongly correlated with the degree of electron delocalization. We first demonstrate the quantitative relationship between structural heterogeneity and two structural parameters: out-of-plane distances of atoms and torsional angles between neighbouring aromatic moieties. The molecular characteristic-dependent trend of planarity is presented in terms of these two parameters for the number of unit moieties, type and distribution of linkers, and substituting alkyl groups. The method presented may provide a simple yet systematic guide for determining the degree of delocalization of cyclic conjugated molecules.


References

[1]  S. Ham, J. -E. Lee, S. Song, X. Peng, T. Hori, N. Aratani, A. Osuka, E. Sim, D. Kim, Phys. Chem. Chem. Phys. 2016, 18, 3871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlsVSnug%3D%3D&md5=04a0ab2936ffe5284a2e0878579f25efCAS | 26765482PubMed |

[2]  W. Kim, J. Sung, K. H. Park, H. Shimizu, M. Imamura, M. Han, E. Sim, M. Iyoda, D. Kim, J. Phys. Chem. Lett. 2015, 6, 4444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslSqu7%2FK&md5=13f452d6fde1c4bed5f6df0eab9d33fbCAS | 26495968PubMed |

[3]  J. R. Sheats, H. Antoniadis, Science 1995, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. Sirringhaus, Science 1998, 280, 1741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslOhurY%3D&md5=7dd5a2c7ca54bf5677b365fdf884a782CAS | 9624049PubMed |

[5]  J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971.
         | 15535639PubMed |

[6]  J.-W. van der Horst, The Electronic and Optical Properties of Conjugated Polymers: Predictions from First-Principles Solid-State Methods 2001, Proefschrift (Ph.D. thesis), Eindhoven University of Technology.

[7]  A. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2rtLY%3D&md5=ba2d033b25c16a85cbb6880a87cfb7f9CAS | 20571667PubMed |

[8]  A. Facchetti, Chem. Mater. 2011, 23, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Srsb3K&md5=85169639a27555ad5bcfbaf56b92fbd3CAS |

[9]  Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. Han, J. Hyun, E. Sim, Soft Matter 2015, 11, 3714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWrsb8%3D&md5=fc206af970fdff88f18875919d5ee1b6CAS | 25833200PubMed |

[11]  M. Han, J. Hyun, E. Sim, J. Phys. Chem. B 2013, 117, 7763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVKhu7k%3D&md5=fcd47b08d4a69504a35db8f51af62c00CAS | 23683252PubMed |

[12]  H. Levine, S. B. Libby, A. M. M. Pruisken, Phys. Rev. Lett. 1983, 51, 1915.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Poater, M. Duran, M. Solà, B. Silvi, Chem. Rev. 2005, 105, 3911.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVChtbc%3D&md5=261bc04d30ef629e1095b4471973bd83CAS | 16218571PubMed |

[14]  M. Han, M. Hong, E. Sim, J. Chem. Phys. 2011, 134, 204901.
         | Crossref | GoogleScholarGoogle Scholar | 21639471PubMed |

[15]  M. K. Cyrański, Chem. Rev. 2005, 105, 3773.
         | Crossref | GoogleScholarGoogle Scholar | 16218567PubMed |

[16]  F. Sondheimer, Pure Appl. Chem. 1963, 7, 363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXjtVGksA%3D%3D&md5=55a4db34119abb70d1258dd6e2d68689CAS |

[17]  J. A. Elvidge, M. Jackman, J. Chem. Soc. 1961, I, 859.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Pauling, J. Sherman, J. Chem. Phys. 1933, 1, 606.
         | 1:CAS:528:DyaA3sXlvVeqtg%3D%3D&md5=56724b36717d4049ef4699fbe5b3c206CAS |

[19]  R. Slota, G. Mele, K. Ejsmont, A. A. Domanski, R. del Sole, Acta Crystallogr. Sect. E: Crystallogr. Commun. 2007, E63, m2582.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Cornelisse, Recl. Trav. Chim. Pays Bas 1995, 114, 378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFWrtrw%3D&md5=c53c331967890cf62ab63719ac6ee6bdCAS |

[21]  T. M. Krygowski, J. Chem. Inf. Comput. Sci. 1993, 33, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFSntw%3D%3D&md5=7995c4ef682d6483fae928f5380049b4CAS |

[22]  J. W. Armit, R. Robinson, J. Chem. Soc. Trans. 1925, 127, 1604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2MXit1Knsg%3D%3D&md5=e8a6041da5e3596596f541242be150d7CAS |

[23]  P. V. R. Schleyer, H. Jiao, Pure Appl. Chem. 1996, 68, 209.
         | 1:CAS:528:DyaK28Xitleju78%3D&md5=b3880c19b7076e482d9ce9dc4fed1da8CAS |

[24]  E. Matito, Phys. Chem. Chem. Phys. 2016, 18, 11839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFymtL4%3D&md5=16c01e4a13bc8581a420a82ba365de6cCAS | 26878146PubMed |

[25]  G. Orlandi, L. Gagliardi, S. Melandri, W. Caminati, J. Mol. Struct. 2002, 612, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xksl2gs7k%3D&md5=a4cc62736a1bf1cdf58ded680af9147eCAS |

[26]  W. Massa, Crystal Structure Determination 2004 (Springer: Heidelberg).

[27]  J. Sjo, J. Maria, R. A. Simon, M. Linares, P. Norman, K. P. R. Nilsson, M. Lindgren, J. Phys. Chem. A 2014, 118, 9820.

[28]  E. G. Stein, L. M. Rice, T. Brünger, J. Magn. Reson. 1997, 124, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXovVShtQ%3D%3D&md5=2dbfdad170c0efd792df94ed8e13f560CAS | 9424305PubMed |

[29]  T. Honda, T. Kojima, S. Fukuzumi, Chem. Commun. 2009, 4994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps12is74%3D&md5=e15244f580edcad1e6b20d5503c102dfCAS |

[30]  S. Lipstman, S. Muniappan, I. Goldberg, Acta Crystallogr., Sect. C: Struct. Chem. 2007, 63, m300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1enurk%3D&md5=e6ecd88067d21d7474daa3e283a3fe5dCAS |

[31]  E. Matito, J. Poater, M. Duran, M. Sola, J. Mol. Struct.: THEOCHEM 2005, 727, 165.
         | 1:CAS:528:DC%2BD2MXot1Cjtbw%3D&md5=0bf2e10a6106b9cc4623fec2a9b931e6CAS |

[32]  See pp. 154–165 in: F. J. Burkowski, Computational and Visualization Techniques for Structural Bioinformatics Using Chimera 2014 (Chapman & Hall/CRC: Boca Raton, FL).

[33]  J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SlsbbJ&md5=44971cfd0d44e1276c04c1150dfc4a26CAS | 16222654PubMed |

[34]  W. Yu, X. He, K. Vanommeslaeghe, A. D. MacKerell, J. Comput. Chem. 2012, 33, 2451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKntL7J&md5=05551ba04f89b816ed3e6886ee79a4bdCAS | 22821581PubMed |

[35]  K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell, J. Comput. Chem. 2010, 31, 671.
         | 1:CAS:528:DC%2BC3cXhtlentbc%3D&md5=27d731169d11d0301428038365e52512CAS | 19575467PubMed |

[36]  K. Vanommeslaeghe, D. MacKerell, J. Chem. Inf. Model. 2012, 52, 3144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gns7fL&md5=88784f18736606f34d2877f0b91fb41fCAS | 23146088PubMed |

[37]  K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell, J. Chem. Inf. Model. 2012, 52, 3155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gns7fF&md5=ea5317df0fbc4fcbefd4c4867efc4d0eCAS | 23145473PubMed |

[38]  P. Kim, K. H. Park, W. Kim, T. Tamachi, M. Iyoda, D. Kim, J. Phys. Chem. Lett. 2015, 6, 451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXks1GjsQ%3D%3D&md5=be6a3329e4ca5cd48166bbcd79df3001CAS | 26261962PubMed |

[39]  M. Alonso, P. Geerlings, F. De Proft, Phys. Chem. Chem. Phys. 2014, 16, 14396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKgs7nK&md5=3f95b899fd9d1a3b1b00bc5173798e38CAS | 24598905PubMed |

[40]  R. Herges, Chem. Rev. 2006, 106, 4820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCgtr7N&md5=ac0bb0fc4599fa9dbdaeacbd01613777CAS | 17165676PubMed |

[41]  F. Feixas, E. Matito, J. Poater, M. Sola, Chem. Soc. Rev. 2015, 44, 6434.
         | 1:CAS:528:DC%2BC2MXmtlOjtro%3D&md5=944ee7cce23e3b946f31d5396441a430CAS | 25858673PubMed |

[42]  F. Feixas, E. Matito, J. Poater, M. Sola, J. Comput. Chem. 2008, 29, 1543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCgur4%3D&md5=cd6f47f9f5a2f7eebb0c429cf6319c31CAS | 18270958PubMed |