Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

3D Ln–Organic Frameworks Featuring Lantern-Shaped Dihelicate Chains: Synthesis and Magnetic and Photophysical Properties

Shengyun Liao A , Peiyao Du B , Yanping Zhang B , Xin Fu B , Wen Gu B C D E and Xin Liu B C D E
+ Author Affiliations
- Author Affiliations

A Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384, China.

B Department of Chemistry, Nankai University, Tianjin 300071, China.

C Key Laboratory of Advanced Energy Material Chemistry, Tianjin 300071, China.

D Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

E Corresponding authors. Email: guwen68@nankai.edu.cn; liuxin64@nankai.edu.cn

Australian Journal of Chemistry 69(9) 1062-1069 https://doi.org/10.1071/CH16008
Submitted: 11 January 2016  Accepted: 18 March 2016   Published: 28 April 2016

Abstract

The in situ hydrothermal reaction of rare earth nitrate (Ln(NO3)3), 5-(4-carboxyl-1H-1,2,3-triazol-1-yl) isophthalic acid (H3ctia), and (NH4)2C2O4 resulted in the formation of a series of 3D 4f coordination polymers ([Ln(tia)(C2O4)0.5(H2O)]) (Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6), and tia2– = 5-(1H-1,2,3-triazol-1-yl) isophthalate). The results of single crystal X-ray diffraction reveal that the dinuclear lantern sub-building units ([Ln2(CO2)4]2+) are linked by C2O42– to form dihelicate chains, which are connected by tia2– to afford a novel 3D metal–organic framework with an unordinary 3-nodal (2,3,8)-connected topological network with the Schläfli symbol of {4.62}2{42.616.89.10}{6}. Complexes 2, 3, 5, and 6 exhibit strong fluorescent emissions in the visible region and complexes 1, 2, and 6 show characteristic fluorescent emissions in the near-infrared region. In addition, the magnetic properties of complexes 4, 5, and 6 were also investigated.


References

[1]  (a) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=c83d8fe1a05700b3e52892cf93c3fc9bCAS | 21688849PubMed |
      (b) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Barea, C. Montoro, J. A. Navarro, Chem. Soc. Rev. 2014, 43, 5419.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Wang, O. S. Wolfbeis, R. J. Meier, Chem. Soc. Rev. 2013, 42, 7834.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Li, S. Zhang, D. Song, Angew. Chem. Int. Ed. 2013, 125, 738.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) K. Leong, M. E. Foster, B. M. Wong, E. D. Spoerke, D. V. Gough, J. C. Deaton, M. D. Allendorf, J. Mater. Chem. A 2014, 2, 3389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVCju7Y%3D&md5=910f59408958905ae7a21b1432377a38CAS |
      (b) P. R. Matthes, C. J. Höller, M. Mai, J. Heck, S. J. Sedlmaier, S. Schmiechen, C. Feldman, W. Schnick, K. Müller-Buschbum, J. Mater. Chem. 2012, 22, 10179.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Ji, X. Lan, Z. Han, C. Hao, J. Qiu, Inorg. Chem. 2012, 51, 12389.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. A. Kent, B. P. Mehl, L. Ma, J. M. Papanikolas, T. J. Meyer, W. Lin, J. Am. Chem. Soc. 2010, 132, 12767.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) D. F. Sava Gallis, L. E. S. Rohwer, M. A. Rodriguez, T. M. Nenoff, Chem. Mater. 2014, 26, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOnur4%3D&md5=e745849dfbaec508e778a484eea893deCAS |
      (b) X.-Z. Song, S.-Y. Song, S.-N. Zhao, Z.-M. Hao, M. Zhu, X. Meng, L.-L. Wu, H.-J. Zhang, Adv. Funct. Mater. 2014, 24, 4034.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  B. Zhao, P. Cheng, Y. Dai, C. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, G. L. Wang, Angew. Chem. Int. Ed. 2003, 42, 934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFWltbs%3D&md5=35cb5e2ec44b7bea223a051f3bd84642CAS |

[5]  (a) A. Caneschi, A. Dei, D. Gatteschi, L. Sorace, K. Vostrikova, Angew. Chem. Int. Ed. 2000, 39, 246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1equw%3D%3D&md5=30c8389b41ad8aa4eeeae54eaec9520fCAS |
      (b) S. O. H. Gutschke, M. Molinier, A. K. Powell, P. W. Wood, Angew. Chem. Int. Ed. Engl. 1997, 36, 991.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) S. Raphael, M. L. P. Reddy, A. H. Cowley, M. Findlater, Eur. J. Org. Chem. 2008, 4387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OjsrfL&md5=d548c800e197ace500160bdc39d0fec1CAS |
      (b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) C.-Y. Sun, X.-L. Lang, X. Zhang, C. Qin, P. Li, Z.-M. Su, D.-X. Zhu, G. G. Shan, K.-Z. Shao, H. Wu, J. Li, Nat. Commun. 2013, 4, 453.
      (b) A. Wada, M. Watanabe, Y. Yamanoi, H. Nishihara, Chem. Commun. 2008, 14, 1671.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Ma, X. Huang, X. Song, W. Liu, Chem. – Eur. J. 2013, 19, 3590.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. F. Sava Gallis, L. E. S. Rohwer, M. A. Rodriguez, T. M. Nenoff, Chem. Mater. 2014, 26, 2943.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, J. Am. Chem. Soc. 2014, 136, 5527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Cqsb4%3D&md5=307219c8ace8914d4a6768342ff94809CAS | 24697214PubMed |
      (b) S.-R. Zhang, D.-Y. Du, J.-S. Qin, H.-Q. Dong, S. L. Li, W.-W. He, Y.-Q. Lan, P. Shen, Z.-M. Su, Chem. – Eur. J. 2013, 19, 11279.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) P. Anzenbacher, D. S. Tyson, K. Jursíková, F. N. Castellano, J. Am. Chem. Soc. 2002, 124, 6232.
         | 1:CAS:528:DC%2BD38Xjt12rt70%3D&md5=78c5d1e45ae04d3ca7f8c7705e2dd3a5CAS | 12033839PubMed |
      (b) J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, Nanoscale 2013, 5, 944.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. V. Kozlov, F. N. Castellano, J. Phys. Chem. A 2004, 108, 10619.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) S.-Y. Liao, T.-H. Li, J.-L. Tian, L.-Y. Yang, W. Gu, X. Liu, RSC Adv. 2014, 4, 29877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtValsrjP&md5=e5b44d02f97c514792822620dd87fbc4CAS |
      (b) S.-Y. Liao, W. Gu, L.-Y. Yang, T.-H. Li, J.-L. Tian, L. Wang, M. Zhang, X. Liu, Cryst. Growth Des. 2012, 12, 3927.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y.-L. Wang, Y. Ma, X. Yang, J. Tang, D.-Z. Liao, Inorg. Chem. 2013, 52, 7380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVCjtbw%3D&md5=cc897b67bd5ccaacc981086b2316c69aCAS | 23746218PubMed |

[12]  Z. Ahmed, W. A. Dar, K. Iftikhar, Inorg. Chim. Acta 2012, 392, 446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlant7bJ&md5=4393cdfa368b3c3c69fed72f23d3b0b4CAS |

[13]  Y.-X. Chi, S.-Y. Niu, Z.-L. Wang, J. Jin, Eur. J. Inorg. Chem. 2008, 2336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslKrt70%3D&md5=f19b23668f9bda6c22b237b9f9895d3dCAS |

[14]  (a) L. Smentek-Mielczarek, K. Jankowski, Int. J. Quantum Chem. 1983, 24, 339.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. D’Aléo, J. Xu, E. G. Moore, C. J. Jocher, K. N. Raymond, Inorg. Chem. 2008, 47, 6109.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J.-L. Liu, B. Yan, Dalton Trans. 2011, 40, 1961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeltr4%3D&md5=e0676d3f1ee9453bcf9be1317f088cbcCAS | 21283861PubMed |

[16]  J. W. Stouwdam, F. C. Van, J. M. Veggel, Nano Lett. 2002, 2, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1SmsLc%3D&md5=52f85126c3f68bd874eead00a5817b88CAS |

[17]  A. Nag, B. V. Lotsch, J. S. Aufder-Günne, O. Oecker, P. J. Schmidt, W. Schnick, Chem – Eur. J. 2007, 13, 3512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCrtbo%3D&md5=7570514b9a5f956cc3c197ea274fbe78CAS | 17304594PubMed |

[18]  G. Zucchi, O. Maury, P. Thuėry, F. Gumy, J.-C. G. Bünzli, M. Ephritikhine, Chem. – Eur. J. 2009, 15, 9686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ht73F&md5=6e586b0c142d22376a3af820f863ef73CAS | 19739222PubMed |

[19]  Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=c83d8fe1a05700b3e52892cf93c3fc9bCAS | 21688849PubMed |

[20]  S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura, F. Barigelletti, Inorg. Chem. 2005, 44, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosFGi&md5=5dc84466ce5238a9f6e5434436e8ff71CAS | 15679381PubMed |

[21]  J. Feng, H.-J. Zhang, S.-Y. Song, Z.-F. Li, L.-N. Sun, Y. Xing, X.-M. Guo, J. Lumin. 2008, 128, 1957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqs7%2FM&md5=1df8259f04a5110b5cd920fdd753467fCAS |

[22]  Y.-G. Sun, Y.-L. Wu, G. Xiong, P. F. Smet, F. Ding, M.-Y. Guo, M.-C. Zhu, E.-J. Gao, D. Poelman, F. Verpoort, Dalton Trans. 2010, 39, 11383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOktr3M&md5=08654c275d5efcfc92a1e022ecf185f6CAS | 20978673PubMed |

[23]  F. He, M.-L. Tong, X.-M. Chen, Inorg. Chem. 2005, 44, 8285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVylsr7F&md5=52b37951a6756a0109ae54d31f445476CAS | 16270967PubMed |

[24]  N. Xu, W. Shi, D.-Z. Liao, S.-P. Yan, P. Cheng, Inorg. Chem. 2008, 47, 8748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitLvM&md5=c66c22da80e57432a6c4041fa3fde272CAS | 18722421PubMed |

[25]  D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, J. A. K. Howard, Chem. Rev. 2002, 102, 1977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjslens7c%3D&md5=fec945cbb51ba916ba5a2a0eda1827e7CAS | 12059260PubMed |

[26]  C. M. Wynn, M. A. Gîrtu, W. B. Brinckerhoff, K.-I. Sugiura, J. S. Miller, A. J. Epstein, Chem. Mater. 1997, 9, 2156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlWlu7c%3D&md5=fd839acbe5ab4485b25c81e4e1bb8943CAS |