Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Fe(dppe)(η5-C5Me5)-Based Phenylalkynyl Complexes Featuring an NO2 End Group: A Theoretical Analysis*

Hiba Sahnoune A , Nicolas Gauthier A , Katy Green A , Karine Costuas A , Frédéric Paul A B and Jean-François Halet A B
+ Author Affiliations
- Author Affiliations

A Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, F-35042 Rennes Cedex, France.

B Corresponding authors. Email: frederic.paul@univ-rennes1.fr; halet@univ-rennes1.fr

Australian Journal of Chemistry 68(9) 1352-1358 https://doi.org/10.1071/CH15136
Submitted: 20 March 2015  Accepted: 29 April 2015   Published: 25 May 2015

Abstract

Electronic structures and optical properties of a series of compounds Fe(dppe)(η5-C5Me5){[C≡C(1,4-C6H4)]nNO2} (13; n = 1–3, dppe = 1,2-bis(diphenylphosphino)ethane) were investigated with the aid of density functional theory and time-dependent density functional theory computations. The results reveal that the extension of the carbon-rich chain has a moderate influence on the electronic properties of the studied compounds in their ground state, but affects notably their spectroscopic properties, with some unexpected hypsochromic shift of the lower energy absorption bands upon carbon chain lengthening. The appropriate excitations responsible for the low-energy absorption bands involve mainly HOMO–LUMO transitions dominated by important metal-to-ligand charge transfer. A functional including long-range corrections is necessary to reproduce the experimental results.


References

[1]  K. A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Coord. Chem. Rev. 2011, 255, 2530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLbK&md5=a3d60a9109c1e2a1f022b917d7a74969CAS |

[2]  G. Grelaud, M. P. Cifuentes, F. Paul, M. G. Humphrey, J. Organomet. Chem. 2014, 751, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWrt7vF&md5=22c840813d79190ee8263cc0f563a516CAS |

[3]  K. A. Green, M. P. Cifuentes, M. Samoc, M. G. Humphrey, Coord. Chem. Rev. 2011, 255, 2025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1CisL8%3D&md5=3d7c3d5c0b22fdea8683a9fb316381acCAS |

[4]  B. A. Babgi, A. Al-Hindawi, G. J. Moxe, F. I. Abdul Razak, M. P. Cifuentes, E. Kulasekera, R. Stranger, A. Teshome, I. Asselberghs, K. Clays, M. G. Humphrey, J. Organomet. Chem. 2013, 730, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislWht7Y%3D&md5=0c865987ea9f7cc5729aa1c77f8d4edcCAS |

[5]  E. Kulasekera, S. Petrie, R. Stranger, M. P. Cifuentes, M. G. Humphrey, J. Organomet. Chem. 2013, 748, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yjsbbF&md5=72247fc36722b636f2d4caa9257dc9b2CAS |

[6]  F. Paul, K. Costuas, I. Ledoux, S. Deveau, J. Zyss, J.-F. Halet, C. Lapinte, Organometallics 2002, 21, 5229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1KrtLk%3D&md5=397de7ca2d3b454f886e64c1c53bc71cCAS |

[7]  R. Denis, L. Toupet, F. Paul, C. Lapinte, Organometallics 2000, 19, 4240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Kiurw%3D&md5=4203e9c5aecbf8f7c1112c27284666b6CAS |

[8]  K. Costuas, F. Paul, L. Toupet, J.-F. Halet, C. Lapinte, Organometallics 2004, 23, 2053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlKns7o%3D&md5=31db0aa792671118e66e76c1d29a599aCAS |

[9]  C. D’Amico, M. Lorenc, E. Collet, K. A. Green, K. Costuas, O. Mongin, M. Blanchard-Desce, F. Paul, J. Phys. Chem. C 2012, 116, 3719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVahtQ%3D%3D&md5=24f37f595c1360768d279d378666af93CAS |

[10]  C. E. Powell, M. P. Cifuentes, A. M. McDonagh, S. K. Hurst, N. T. Lucas, C. A. Delfs, R. Stranger, M. G. Humphrey, S. Houbrechts, I. Asselberghs, A. Persoons, D. C. Hockless, Inorg. Chim. Acta 2003, 352, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKqtr0%3D&md5=8f9d15a4613081489164e3282e52c309CAS |

[11]  E. Kulasekera, S. Petrie, R. Stranger, M. G. Humphrey, Organometallics 2014, 33, 2434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslynt7w%3D&md5=fc1ee44813f4ed313f54a0993e2ff1e4CAS |

[12]  (a) L. Rigamonti, B. Babgi, M. P. Cifuentes, R. L. Roberts, S. Petrie, R. Stranger, S. Righetto, A. Teshome, I. Asselberghs, K. Clays, M. G. Humphrey, Inorg. Chem. 2009, 48, 3562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2rurw%3D&md5=62e7e95d9f617b536c73d13ce7707876CAS | 19298046PubMed |
      (b) B. Babgi, L. Rigamonti, M. P. Cifuentes, T. C. Corkery, M. D. Randles, T. Schwich, S. Petrie, R. Stranger, A. Teshome, I. Asselberghs, K. Clays, M. Samoc, M. G. Humphrey, J. Am. Chem. Soc. 2009, 131, 10293.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. T. Dalton, M. P. Cifuentes, L. A. Watson, S. Petrie, R. Stranger, M. Samoc, M. G. Humphrey, Inorg. Chem. 2009, 48, 6534.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. Gauthier, Nouveaux complexes de fer et de ruthénium actifs en optique non linéaire: vers des matériaux moléculaires électrocommutables 2008, Ph.D. thesis, Université de Rennes 1, France.

[14]  (a) F. Paul, C. Lapinte, Coord. Chem. Rev. 1998, 178–180, 431.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J.-F. Halet, C. Lapinte, Coord. Chem. Rev. 2013, 257, 1584.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  K. Green, N. Gauthier, H. Sahnoune, G. Argouarch, L. Toupet, K. Costuas, A. Bondon, B. Fabre, J.-F. Halet, F. Paul, Organometallics 2013, 32, 4366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2jsb7I&md5=ed36fdea254a0eeddbaf53d5c28b7698CAS |

[16]  F. Paul, J.-Y. Mevellec, C. Lapinte, J. Chem. Soc., Dalton Trans. 2002, 1783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislWgs7w%3D&md5=520191078bbfde330d0886c42f8af492CAS |

[17]  See for example: C. Adamo, D. Jacquemin, Chem. Soc. Rev. 2013, 42, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosV2jtA%3D%3D&md5=74ac4e42fb9f7973f102b8fddc35cefaCAS | 23117144PubMed |

[18]  (a) G. te Velde, F. M. Bickelhaupt, C. Fonseca Guerra, S. J. A. van Gisbergen, E. J. Baerends, J. Snijders, T. Ziegler, Theor. Chem. Acc. 2001, 22, 931.
         | 1:CAS:528:DC%2BD3MXjtlGntrw%3D&md5=02c64ddf9939baffc35a9bf36b6bc148CAS |
      (b) C. Fonseca Guerra, J. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.

[19]  ADF2010.02 2010 (Scientific Computing & Modelling (SCM): Amsterdam).

[20]  S. D. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFagt74%3D&md5=7edb2c5a8b8128f5d5d8d27633d4d6ecCAS |

[21]  J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Y. Zhang, W. Yang, Phys. Rev. Lett. 1998, 80, 890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsV2itg%3D%3D&md5=3ab36ae1adab272ce97e1a4371285310CAS |

[23]  L. Versluis, T. Ziegler, J. Chem. Phys. 1988, 88, 322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFejtr0%3D&md5=d0940bdd3618ec85d96c0e6f2f01a0d4CAS |

[24]  S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, Comput. Phys. Commun. 1999, 118, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Crur4%3D&md5=b087b9aa99efd8378acc84bba70ad73bCAS |

[25]  C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=86e4969afe60876d8f5d343bd37d5233CAS |

[26]  (a) C. Pye, T. Ziegler, Theor. Chem. Acc. 1999, 101, 396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVSqt7k%3D&md5=0e5336f0d5875f41ccc775c09613d88dCAS |
      (b) A. Klamt, J. Phys. Chem. 1995, 99, 2224.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=92084a6404e1491b2caea9eeb7fbd9f7CAS |

[28]  R. Kobayashi, R. D. Amos, Chem. Phys. Lett. 2006, 420, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslyqs7s%3D&md5=f9f6a09439b8288757284552997046e7CAS |

[29]  K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFCisbg%3D&md5=0148a2f9e85048419ce53bc54e7a560bCAS |

[30]  J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynurc%3D&md5=51f7fd6b14bb904336cb9a41013270e1CAS | 16092826PubMed |

[31]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).