Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Generation of a Highly Stable Reusable Biocatalyst by Entrapment of an Oligomeric Enzyme in Ultra-Large-Pore Mesoporous Silica*

Christopher B. J. MacDonald A , Matthew F. Tobin A , Anna E. Morrison A , Mary E. Tait A , Godwin B. D’Cunha A and Stephanie L. MacQuarrie A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada, B1P6L2.

B Corresponding author. Email: Stephanie_MacQuarrie@cbu.ca

Australian Journal of Chemistry 68(3) 396-400 https://doi.org/10.1071/CH14603
Submitted: 4 October 2014  Accepted: 21 November 2014   Published: 23 December 2014

Abstract

Phenylalanine ammonia lyase (PAL, E.C.4.3.1.24), was entrapped in ultra-large-pore mesoporous silica (ULPS, 23 nm pore diameter) generating a recyclable, separable biocatalyst. The entrapped ULPS-PAL materials showed excellent stabilization, even after significant exposure to prolonged heating. Additionally, the entrapped ULPS-PAL materials showed extremely high catalytic activity in the deamination of l-phenylalanine to trans-cinnamic acid in aqueous solution and were recovered and recycled up to five times without any observable loss in activity. This approach is simple and capitalizes on the facile synthesis and easy recoverability of mesoporous silicas to generate a stable, reusable PAL-based biocatalyst.


References

[1]  L. Bourget, T. M. S. Chang, FEBS Lett. 1985, 180, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlOks78%3D&md5=ca46068c075ce6b20c49c5ea4041ad40CAS | 4038490PubMed |

[2]  T. S. Kang, L. Wange, C. N. Sarkissian, A. Gamez, C. R. Scriver, R. C. Stevens, Mol. Genet. Metab. 2010, 99, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGgtb7K&md5=52ddf6d7ee1690196cfcbe8cdbe5b998CAS | 19793667PubMed |

[3]  C. N. Sarkissian, A. Gamez, L. Wang, M. Charbonneau, P. Fitzpatrick, J. F. Lemontt, B. Zhao, M. Vellard, S. M. Bell, C. Henschell, A. Lambert, L. Tsuruda, R. C. Stevens, C. R. Scriver, Proc. Natl. Acad. Sci. USA 2008, 105, 20894.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFSruw%3D%3D&md5=42a8a5bdb345d697d01b957fc00ce801CAS | 19095795PubMed |

[4]  G. B. D’Cunha, V. Satyanarayan, P. M. Nair, Enzyme Microb. Technol. 1996, 19, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVynt7g%3D&md5=68bb3f11f109e6d02d431a03497eeb48CAS |

[5]  M. J. MacDonald, G. B. D’Cunha, Biochem. Cell Biol. 2007, 85, 272.

[6]  D. G. Rees, D. H. Jones, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1997, 1338, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsl2ktro%3D&md5=d8de07e87c778884c5b7de073e00f255CAS |

[7]  A. El-Batal, Acta Microbiol. Pol. 2002, 51, 139.
         | 1:CAS:528:DC%2BD38XosFaktrs%3D&md5=b430e204740905e00e0eb4ee68fd20abCAS | 12363075PubMed |

[8]  S. Yamanda, K. Nabe, N. Izuo, K. Nakamichi, I. Chibbata, Appl. Environ. Microbiol. 1981, 42, 773.

[9]  J. R. Cherry, A. L. Fidantsef, Curr. Opin. Biotechnol. 2003, 14, 438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslenu7s%3D&md5=db94f5f9b4c40f6b3004d9cd9c93b95eCAS | 12943855PubMed |

[10]  G. D. Haki, S. K. Rakshit, Bioresour. Technol. 2003, 89, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1aqu7s%3D&md5=c578c66de3ff3766d48ca39f36712787CAS | 12676497PubMed |

[11]  M. McCoy, Chem. Eng. News 2000, 19, 23.

[12]  J. Cui, S. Zhang, L. Sun, Appl. Biochem. Biotechnol. 2012, 167, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVOgu7k%3D&md5=7d4ed4baf93309c1dbd1245588f4ffdeCAS | 22622644PubMed |

[13]  J. D. Cui, L. L. Li, H. J. Bian, PLoS ONE 2013, 8, e80581.
         | Crossref | GoogleScholarGoogle Scholar | 24260425PubMed |

[14]  E. Battistel, D. Bianchi, J. Phys. Chem. 1994, 98, 5368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFarsrw%3D&md5=9240517744924548cf3d68841ec76478CAS |

[15]  A. Zaks, A. M. Kilbanov, Proc. Natl. Acad. Sci. USA 1985, 82, 3192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktVars7c%3D&md5=a6cef915109045a7677beac1c7c8ff8aCAS | 3858815PubMed |

[16]  J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Microporous Mesoporous Mater. 2004, 73, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOku7s%3D&md5=463cb52cc8a0c3a8ecbaf0cb73efec80CAS |

[17]  J. F. Diaz, K. J. Balkus, J. Mol. Catal. B: Enzym. 1996, 2, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlOnsL0%3D&md5=1f190649e552d4249378f683c26e4befCAS |

[18]  Y. J. Han, J. T. Watson, G. D. Stucky, A. Butler, J. Mol. Catal. B: Enzym. 2002, 17, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtleru7g%3D&md5=08ea3c1103652080b808fa40410e3a29CAS |

[19]  C.-H. Lee, T.-S. Lin, C.-Y. Mou, Nano Today 2009, 4, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFGitLs%3D&md5=cbe9307379a3ab762dbee9653a7d3b10CAS |

[20]  H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Microporous Mesoporous Mater. 2001, 44–45, 755.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Calin, A. Galarneau, T. Cacciaguerra, R. Denoyel, F. Fajula, C. R. Chim. 2010, 13, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSmtrw%3D&md5=9d34cec707aee1edf6e88f2111ce394fCAS |

[22]  P. Kortesuo, M. Ahola, S. Karlsson, I. Kangasniemi, A. Yli-Urpo, J. Kiesvaara, Biomaterials 2000, 21, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFWjtg%3D%3D&md5=72ecfa431f815d23846add24f45fb6a5CAS | 10632401PubMed |

[23]  Y. Wang, F. Caruso, Chem. Commun. 2004, 1528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFWns7c%3D&md5=5ddf21b55d904826c6d2e47ca59addb8CAS |