Synthesis of Sterically Demanding Bis(phosphinimine) Dibenzofuran Ligands and Subsequent Zinc Metalation*
Matthew T. Zamora A , Saif M. Zahir A , Kevin R. D. Johnson A , Clay J. Barnson A , Craig A. Wheaton A , Mikko M. Hänninen A and Paul G. Hayes A BA Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
B Corresponding author. Email: p.hayes@uleth.ca
Australian Journal of Chemistry 68(3) 373-384 https://doi.org/10.1071/CH14577
Submitted: 19 September 2014 Accepted: 9 October 2014 Published: 2 December 2014
Abstract
In light of previous success surrounding the use of bis(phosphinimine)dibenzofuran ligands for zinc-mediated lactide polymerization, a series of sterically demanding P=N pincer compounds have been prepared with important steric and electronic modifications at both P- and N-sites (L, 3a–d). These systems are highly crystalline and have been extensively characterized using multinuclear NMR spectroscopy, elemental analysis, and X-ray diffraction. The ligands can be transformed into their protonated analogues [HL][BArF4] (4a–d, [BArF4] = [B(m-(CF3)2-C6H3)4]) by reaction with Brookhart’s acid, and subsequently coordinated to zinc via an alkane elimination reaction with [ZnEt2] at ambient temperature to afford the corresponding [LZnEt][BArF4] cationic complexes 5a–d. In addition, an unusual chloridozinc species [LZnCl][BArF4] (5c′) has been isolated and structurally characterized, providing comparisons to previously established ligand sets with similar geometries.
References
[1] X.-F. Wu, H. Neumann, Adv. Synth. Catal. 2012, 354, 3141.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GgsLvJ&md5=c451cf885f15a490ddf0a006ebe97383CAS |
[2] D. L. Heiserman, Exploring Chemical Elements and their Compounds 1991 (McGraw-Hill: Blue Ridge Summit, PA).
[3] J. O. Blew, Wood Preservatives 1953 (Forest Products Laboratory, Department of Agriculture, Forest Services: Madison, WI).
[4] R. Paschotta, Encyclopedia of Laser Physics and Technology 2008 (Wiley-VCH: Berlin).
[5] See p. 135 in R. A. DiSilvestro, Handbook of Minerals as Nutritional Supplements 2004 (CRC Press: Boca Raton, FL).
[6] W. Sattler, G. Parkin, J. Am. Chem. Soc. 2012, 134, 17462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhsr7I&md5=736e4d1d4f7d7de2f6926350e09c7922CAS | 23046174PubMed |
[7] B. M. Trost, E. R. Silcoff, H. Ito, Org. Lett. 2001, 3, 2497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFGis7c%3D&md5=8cfc9c71e9f2e2e8ce1078bf8d7d0058CAS | 11483044PubMed |
[8] M. Riad, S. Mikhail, Catal. Sci. Technol. 2012, 2, 1437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCiurw%3D&md5=6bbab44e22708de77586755a89b4003dCAS |
[9] (a) C. A. Wheaton, P. G. Hayes, B. J. Ireland, Dalton Trans. 2009, 4832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGit7Y%3D&md5=8e103a9c77b5bc16be5d7e570a8abe9eCAS | 19662272PubMed |
(b) O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. dos Santos Vieira, S. Herres-Pawlis, Eur. J. Inorg. Chem. 2012, 765.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. A. Wheaton, P. G. Hayes, Comments Inorg. Chem. 2011, 32, 127.
| Crossref | GoogleScholarGoogle Scholar |
(e) J.-C. Buffet, J. Okuda, Polym. Chem. 2011, 2, 2758.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. J. Dijkstra, H. Du, J. Feijen, Polym. Chem. 2011, 2, 520.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. J. Stanford, A. P. Dove, Chem. Soc. Rev. 2010, 39, 486.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. H. Chisholm, Inorg. Chim. Acta 2009, 362, 4284.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. H. Platel, L. M. Hodgson, C. K. Williams, Pol. Rev. 2008, 48, 11.
| Crossref | GoogleScholarGoogle Scholar |
(j) J. Wu, T.-L. Yu, C.-T. Chen, C.-C. Lin, Coord. Chem. Rev. 2006, 250, 602.
| Crossref | GoogleScholarGoogle Scholar |
(k) R. Mehta, V. Kumar, H. Bhunia, S. N. Upadhyay, J. Macromol. Sci., Polym. Rev. 2005, 45, 325.
| Crossref | GoogleScholarGoogle Scholar |
(l) F. Drouin, P. O. Oguadinma, T. J. J. Whitehorne, R. E. Prud’homme, F. Schaper, Organometallics 2010, 29, 2139.
| Crossref | GoogleScholarGoogle Scholar |
(m) T. J. J. Whitehorne, B. Vabre, F. Schaper, Dalton Trans. 2014, 43, 6339.
| Crossref | GoogleScholarGoogle Scholar |
(n) S. Nayab, H. Lee, J. H. Jeong, Polyhedron 2011, 30, 405.
| Crossref | GoogleScholarGoogle Scholar |
(o) H.-Y. Chen, Y.-L. Peng, T.-H. Huang, A. K. Sutar, S. A. Miller, C.-C. Lin, J. Mol. Catal. Chem. 2011, 339, 61.
| Crossref | GoogleScholarGoogle Scholar |
(p) J. Börner, I. dos Santos Vieira, A. Pawlis, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. – Eur. J. 2011, 17, 4507.
| Crossref | GoogleScholarGoogle Scholar |
(q) C. N. Ayala, M. H. Chisholm, J. C. Gallucci, C. Krempner, Dalton Trans. 2009, 9237.
| Crossref | GoogleScholarGoogle Scholar |
(r) N. Yang, L. Xin, W. Gao, J. Zhang, X. Luo, X. Liu, Y. Mu, Dalton Trans. 2012, 41, 11454.
| Crossref | GoogleScholarGoogle Scholar |
(s) B. Gao, R. Duan, X. Pang, X. Li, Z. Qu, H. Shao, X. Wang, X. Chen, Dalton Trans. 2013, 42, 16334.
| Crossref | GoogleScholarGoogle Scholar |
(t) Z. Liu, W. Gao, J. Zhang, D. Cui, Q. Wu, Y. Mu, Organometallics 2010, 29, 5783.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) A. Sauer, A. Kapelski, C. Fliedel, S. Dagorne, M. Kol, J. Okuda, Dalton Trans. 2013, 42, 9007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12mtbw%3D&md5=3c8892136612c51b736735b7767a2adfCAS | 23552746PubMed |
(b) S. Inkinen, M. Hakkarainen, A.-C. Albertsson, A. Södergård, Biomacromolecules 2011, 12, 523.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. H. Chisholm, Pure Appl. Chem. 2010, 82, 1647.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Amgoune, C. M. Thomas, J.-F. Carpentier, Pure Appl. Chem. 2007, 79, 2013.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. E. Piers, D. J. H. Emslie, Coord. Chem. Rev. 2002, 233–234, 131.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. J. J. Whitehorne, F. Schaper, Chem. Commun. 2012, 48, 10334.
| Crossref | GoogleScholarGoogle Scholar |
(g) I. El-Zoghbi, T. J. J. Whitehorne, F. Schaper, Dalton Trans. 2013, 42, 9376.
| Crossref | GoogleScholarGoogle Scholar |
(h) T. J. J. Whitehorne, F. Schaper, Can. J. Chem. 2014, 92, 206.
| Crossref | GoogleScholarGoogle Scholar |
(i) T. J. J. Whitehorne, F. Schaper, Inorg. Chem. 2013, 52, 13612.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) M. Cheng, A. B. Attygalle, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 1999, 121, 11583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOqsb4%3D&md5=241fc2c2078bcfdff6d554d227788e68CAS |
(b) B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. S. Hill, P. B. Hitchcock, J. Chem. Soc., Dalton Trans. 2002, 4694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlOjt70%3D&md5=8b63f004b2f1f757e275976e2068713aCAS |
[13] (a) M. D. Hannant, M. Schormann, M. Bochmann, J. Chem. Soc., Dalton Trans. 2002, 4071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1eksrw%3D&md5=ca6a86ebef655c6f2c42a7fe8aa3ab6eCAS |
(b) M. D. Hannant, M. Schormann, D. L. Hughes, M. Bochmann, Inorg. Chim. Acta 2005, 358, 1683.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. A. Wheaton, B. J. Ireland, P. G. Hayes, Organometallics 2009, 28, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFSms78%3D&md5=365075227e2a6c825c26280d07635554CAS |
[15] C. A. Wheaton, P. G. Hayes, J. Organomet. Chem. 2012, 704, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOmt7k%3D&md5=b9f7eed9debdeaa8faa51642bf11c25bCAS |
[16] C. A. Wheaton, P. G. Hayes, Chem. Commun. 2010, 46, 8404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKhsr%2FO&md5=837e65f2a613888c58c215aebb9697bbCAS |
[17] (a) G. Asensio, A. B. Cuenca, M. A. Esteruelas, M. Medio-Simón, M. Oliván, M. Valencia, Inorg. Chem. 2010, 49, 8665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFelsb3O&md5=c599aab67cf9d9c1ddd2fdbb89b504c7CAS | 20828213PubMed |
(b) M. W. Haenel, D. Jakubik, E. Rothenberger, G. Schroth, Chem. Ber. 1991, 124, 1705.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) B. J. Ireland, C. A. Wheaton, P. G. Hayes, Organometallics 2010, 29, 1079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1GntLw%3D&md5=9297779e9ee4b54e3d813b04ae629288CAS |
(b) C. A. Wheaton, P. G. Hayes, Dalton Trans. 2010, 39, 3861.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. A. Wheaton, P. G. Hayes, Catal. Sci. Technol. 2012, 2, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2js7rI&md5=60939a24c28ca284b5361596359ab169CAS |
[20] Despite exhaustive efforts the elemental analysis data for complex 5c was not satisfactory; the best values are given.
[21] H. A. Bent, Chem. Rev. 1961, 61, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXptVyksQ%3D%3D&md5=d2b2d81b4957acd7f083ac2f544720d9CAS |
[22] M. Brookhart, B. Grant, A. F. Volpe, Organometallics 1992, 11, 3920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVajs7Y%3D&md5=8ab1b4af4b1a9f9362ddea123fa38f1fCAS |
[23] S. R. Sandler, W. Karo, Organic Functional Group Preparations 1971 (Academic Press: New York, NY).
[24] E. V. Dzyuba, L. Kaufmann, N. L. Löw, A. K. Meyer, H. D. F. Winkler, K. Rissanen, C. A. Schalley, Org. Lett. 2011, 13, 4838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWqt7jL&md5=e6218dcf0c6c6f31ea6fc337f7ca8a92CAS | 21846084PubMed |
[25] L. P. Spencer, R. Altwer, P. Wei, L. Gelmini, J. Gauld, D. W. Stephan, Organometallics 2003, 22, 3841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVemtL0%3D&md5=3cf41787b1cbd51d6cdb09c0fa3c8fffCAS |
[26] K. R. D. Johnson, P. G. Hayes, Organometallics 2009, 28, 6352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgsLvM&md5=d55cf1e505c3c132ce21597a1a2be61bCAS |
[27] Only observed through HSQC experiments.
[28] APEX2 2010 (Bruker AXS: Madison, WI).
[29] SAINT-Plus 2009 (Bruker AXS: Madison, WI).
[30] G. M. Sheldrick, SADABS 2008 (Bruker AXS: Madison, WI).
[31] (a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |
(b) G. M. Sheldrick, SHELXTL 2003 (Bruker AXS: Madison, WI).
[32] O. V. Dolomanov, J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=aaca26860e75b3466b3e308b609249aeCAS |
[33] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=a53e845eb7e543ed8f2b5515626d9a6cCAS |