Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Conversion of Levoglucosenone into Isolevoglucosenone*

Xinghua Ma A , Natasha Anderson A , Lorenzo V. White A , Song Bae A , Warwick Raverty B , Anthony C. Willis A and Martin G. Banwell A C
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia.

B Circa Group Pty Ltd, 34 Norfolk Court, Coburg North Vic. 3058, Australia.

C Corresponding author. Email: Martin.Banwell@anu.edu.au

Australian Journal of Chemistry 68(4) 593-599 https://doi.org/10.1071/CH14574
Submitted: 18 September 2014  Accepted: 15 October 2014   Published: 27 January 2015

Abstract

Levoglucosenone (1), a compound that will soon be available in tonne quantities through the pyrolysis of acid-treated lignocellulosic biomass, has been converted into isolevoglucosenone (2) using Wharton rearrangement chemistry. Treatment of compound 1 with alkaline hydrogen peroxide gave the γ-lactones 5 and 6 rather than the required epoxy-ketones 3 and/or 4. However, the latter pair of compounds could be obtained by an initial Luche reduction of compound 1, electrophilic epoxidation of the resulting allylic alcohol 8 and oxidation of the product oxiranes 9 and 10. Independent treatment of compounds 3 and 4 with hydrazine then acetic acid followed by oxidation of the ensuing allylic alcohols finally afforded isolevoglucosenone (2). Details of the single-crystal X-ray analyses of epoxy-alcohols 9 and 10 are reported.


References

[1]  F. Shafizadeh, P. P. S. Chin, Carbohydr. Res. 1977, 58, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXmtVWqs7g%3D&md5=1b3bd8c2a23fc824fef73b18c3c0dfedCAS |

[2]  http://circagroup.com.au/levoglucosenone/ (accessed 13 September 2014).

[3]  (a) L. Awad, R. Demange, Y.-H. Zhu, P. Vogel, Carbohydr. Res. 2006, 341, 1235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyqtrk%3D&md5=e471a9be3dfdec4cc5b06f3d61dcedf2CAS | 16678805PubMed |
      (b) A. M. Sarotti, M. M. Zanardi, R. A. Spanevello, Curr. Org. Synth. 2012, 9, 439.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Corne, M. C. Botta, E. D. V. Giordano, G. F. Giri, D. F. Llompart, H. D. Biava, A. M. Sarotti, M. I. Mangione, E. G. Mata, A. G. Suárez, R. A. Spanevello, Pure Appl. Chem. 2013, 85, 1683.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Paris, M. Moliner, A. Corma, Green Chem. 2013, 15, 2101.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  F. Cardona, D. Lalli, C. Faggi, A. Goti, A. Brandi, J. Org. Chem. 2008, 73, 1999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitL8%3D&md5=4c76efb56ccf4cafd4b689edb85b1b73CAS | 18220409PubMed |

[5]  (a) P. Köll, T. Schultek, R.-W. Rennecke, Chem. Ber. 1976, 109, 337.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Horton, J. P. Roski, P. Norris, J. Org. Chem. 1996, 61, 3783.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Z. J. Witczak, P. Kaplon, M. Kolodziej, J. Carbohydr. Chem. 2002, 21, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKju7o%3D&md5=4eaa0319313bdfefdff70aea51607a0cCAS |

[7]  R. H. Furneaux, G. J. Gainsford, F. Shafizadeh, T. T. Stevenson, Carbohydr. Res. 1986, 146, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Cmsr8%3D&md5=71fba7abe4bf655ced850a17d8183815CAS |

[8]  See, for example: C. Dupuy, J. L. Luche, Tetrahedron 1989, 45, 3437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjs1WqsQ%3D%3D&md5=0a29e71b7783d3b62029a08b27ea0652CAS |

[9]  F. Shafizadeh, R. H. Furneaux, T. T. Stevenson, Carbohydr. Res. 1979, 71, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFWrtrY%3D&md5=a6c67e6961591e9fc9c936fb8ab1ac4dCAS |

[10]  K. Koseki, T. Ebata, H. Kawakami, H. Matsushita, Y. Naoi, K. Itoh, Heterocycles 1990, 31, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFOgtrk%3D&md5=eb0d6e6836a0ba9cbf33a258d8048b5fCAS |

[11]  J. Mulzer, M. Kappert, G. Huttner, I. Jibril, Angew. Chem., Int. Ed. Engl. 1984, 23, 704.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  K. Matsumoto, T. Ebata, K. Koseki, K. Okano, H. Kawakami, H. Matsushita, Heterocycles 1992, 34, 1935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KitL7L&md5=3615adec08d9b68cf4b94f4cc09b8e91CAS |

[13]  M. Džoganová, M. Černý, M. Buděšínský, M. Dračínský, T. Trnka, Collect. Czech. Chem. Commun. 2006, 71, 1497.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  The X-ray crystal structure of compound 10 has been reported previously (see ref. [12]).

[15]  K. Kadota, K. Ogasawara, Tetrahedron Lett. 2001, 42, 8661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlWrsbk%3D&md5=89aa41578afd65558371830d5677f507CAS |

[16]  (a) G. Lauer, F. Oberdorfer, Angew. Chem., Int. Ed. Engl. 1993, 32, 272.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. Krohn, D. Gehle, U. Flörke, Eur. J. Org. Chem. 2005, 4557.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) K. Heyns, R.-W. Rennecke, P. Köll, Chem. Ber. 1975, 108, 3645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XnsVGgtg%3D%3D&md5=bfe3dfdf3cac3d2c5ab4b1f7512441b2CAS |
      (b) R.-W. Rennecke, K. Eberstein, P. Köll, Chem. Ber. 1975, 108, 3652.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Tureček, T. Trnka, M. Černý, Collect. Czech. Chem. Commun. 1981, 46, 2390.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Di-imide reductions can be carried out using hydrazine in the presence of oxygen and catalytic quantities of various species, see: B. Pieber, S. Teixeira Martinez, D. Cantillo, C. O. Kappe, Angew. Chem., Int. Ed. 2013, 52, 10241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oqur7N&md5=603819275762bc8aac478040b2adb881CAS |

[20]  Z. J. Witczak, H. Chen, P. Kaplon, Tetrahedron: Asymmetry 2000, 11, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlOisLk%3D&md5=8b6d8022378c30585f35216bbae5e979CAS |

[21]  (a) T. Taniguchi, K. Nakamura, K. Ogasawara, Synlett 1996, 971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1ylsrc%3D&md5=87dc099f3c8c215a2377aa11b32bc2f7CAS |
      (b) K. Kadota, A. S. ElAzab, T. Taniguchi, K. Ogasawara, Synthesis 2000, 1372.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2hu7s%3D&md5=3ec91dac3f70d50b963bd0dc5b364fa5CAS |

[23]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=78dd085ab0087d97669b9b0aea1cf21fCAS |

[24]  Z. Otwinowski, W. Minor, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A (Eds C. W. Carter Jr, R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).

[25]  CrysAlis PRO, Agilent Technologies: Version 1.171.37.21t (release 24–10–2013 CrysAlis171.NET) (compiled 24 Oct 2013, 16:12:21) for compounds 9 and 10; Version 1.171.37.33d (release 23–04–2014 CrysAlis171.NET) (compiled 23 April 2014, 17:37:27) for compound 14.

[26]  A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.

[27]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFekt78%3D&md5=8b033fc538a9dd99e4736dbd95b8272eCAS |