Biosynthetic Incorporation of Fluorinated Amino Acids into Peptides and Proteins
Samuel A. Fraser A and Christopher J. Easton A BA Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
B Corresponding author. Email: easton@rsc.anu.edu.au
Australian Journal of Chemistry 68(1) 9-12 https://doi.org/10.1071/CH14356
Submitted: 4 June 2014 Accepted: 26 June 2014 Published: 19 August 2014
Abstract
Native and engineered protein biosynthetic machinery processes a wide range of fluorinated α-amino acids for incorporation into peptides and proteins, either as substitutes for structurally similar amino acids normally found in proteins, or as additional ones. In the former case, replacement occurs wherever the normal amino acid is encoded, while the latter method is site-specific. The fluorinated peptides have a diverse variety of interesting properties. The biochemical synthetic methods are straightforward, to the point that they should routinely be assessed as alternatives to traditional solid- and solution-phase peptide synthesis.
References
[1] Organofluorine Chemistry: Principles and Commercial Applications (Eds R. E. Banks, B. E. Smart, J. C. Tatlow) 1994 (Plenum Press: New York, NY).[2] B. C. Buer, E. N. G. Marsh, Protein Sci. 2012, 21, 453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWgsbs%3D&md5=c8ba6f56c6990c91cfe3ff68637b999dCAS | 22274989PubMed |
[3] M. Sanada, T. Miyano, S. Iwadare, J. M. Williamson, B. H. Arison, J. L. Smith, A. W. Douglas, J. M. Liesch, E. Inamine, J. Antibiot. 1986, 39, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVemsbY%3D&md5=21c8538dbb3022f7ae1219e595e34f18CAS | 3082840PubMed |
[4] C. J. Easton, Chem. Rev. 1997, 97, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOhsw%3D%3D&md5=97f3feacba72d40aadc34c45e97fc0f1CAS | 11848865PubMed |
[5] X.-L. Qiu, F.-L. Qing, Eur. J. Org. Chem. 2011, 3261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGrsL8%3D&md5=97a50d1f37507f34212e02d0f8ae505eCAS |
[6] Y. Takeuchi, K. Kirihara, K. L. Kirk, N. Shibata, Chem. Commun. 2000, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVWlt7Y%3D&md5=ec46374538ad59e5f0028f1a0dfbb7cbCAS |
[7] F. Weygand, W. Steglich, W. Oettmeier, Chem. Ber. 1970, 103, 1655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1Grt7g%3D&md5=54af8dda2aefa29f880ebc3c96f98b64CAS | 5447177PubMed |
[8] D. E. Atkinson, S. Melvin, S. W. Fox, Arch. Biochem. Biophys. 1951, 31, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXjtlWjsg%3D%3D&md5=701294fb32ac96dd03fa965b953e05fbCAS | 14830227PubMed |
[9] M. P. Gamcsik, J. T. Gerig, FEBS Lett. 1986, 196, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xht1Gltb8%3D&md5=97b8d73a426946bd9c928b91b864c901CAS | 3080340PubMed |
[10] C. Lian, H. Le, B. Montez, J. Patterson, S. Harrell, D. Laws, I. Matsumura, J. Pearson, E. Oldfield, Biochemistry 1994, 33, 5238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFymtb4%3D&md5=861b67f458868b89368c05c93a77f418CAS | 8172898PubMed |
[11] B. D. Sykes, H. I. Weingarten, M. J. Schlesinger, Proc. Natl. Acad. Sci. USA 1974, 71, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtFOks78%3D&md5=814a7318c8b88422d3e5d8853c357dc7CAS | 4592693PubMed |
[12] H. Duewel, E. Daub, V. Robinson, J. F. Honek, Biochemistry 1997, 36, 3404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlGjuro%3D&md5=eae25bd0144296f23939b92cd1b5da14CAS | 9116020PubMed |
[13] M. D. Vaughan, P. Cleve, V. Robinson, H. S. Duewel, J. F. Honek, J. Am. Chem. Soc. 1999, 121, 8475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlans70%3D&md5=814e5d31330e72afea688d8c41afde2eCAS |
[14] J. K. Montclare, S. Son, G. A. Clark, K. Kumar, D. A. Tirrell, ChemBioChem 2009, 10, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtbg%3D&md5=3968ffec927ec6f7cb8a07da0c4c1b72CAS | 19090517PubMed |
[15] A. A. Gottlieb, Y. Fujita, S. Udenfriend, B. Witkop, Biochemistry 1965, 4, 2507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XltVaq&md5=93bf9b69715f5c5b126361c2794b6d03CAS |
[16] K. Deepankumar, S. P. Nadarajan, N. Ayyadurai, H. Yun, Biochem. Biophys. Res. Commun. 2013, 440, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Witr7J&md5=7fd3134283616a1828c0a3002aabf968CAS | 24080380PubMed |
[17] J. F. Eichler, J. C. Cramer, K. L. Kirk, J. G. Bann, ChemBioChem 2005, 6, 2170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlalu7fM&md5=e46b4c75d74f18fa44c49ab1e363fbbeCAS | 16261552PubMed |
[18] T. H. Yoo, D. A. Tirrell, Angew. Chem. Int. Ed. 2007, 46, 5340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVSmsrc%3D&md5=6a058d4bc4af5a3a6e6482d55001a022CAS |
[19] Y. Tang, D. A. Tirrell, J. Am. Chem. Soc. 2001, 123, 11089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2lsrg%3D&md5=5875eafa173d93432d41627664e03897CAS | 11686725PubMed |
[20] P. Wang, Y. Tang, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 6900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVGlsrw%3D&md5=2eae2912cff753073c555f4ea144f122CAS | 12783542PubMed |
[21] W. Kim, A. George, M. Evans, V. P. Conticello, ChemBioChem 2004, 5, 928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVagt7Y%3D&md5=ee97b64a3171bc152248d81897861a4cCAS | 15239049PubMed |
[22] P. Wang, A. Fichera, K. Kumar, D. A. Tirrell, Angew. Chem. Int. Ed. 2004, 43, 3664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVKrt7k%3D&md5=44ca38616d7ec660eec82186c9912715CAS |
[23] K. Ozawa, M. J. Headlam, D. Mouradov, S. J. Watt, J. L. Beck, K. J. Rodgers, R. T. Dean, T. Huber, G. Otting, N. E. Dixon, FEBS J. 2005, 272, 3162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCiu7Y%3D&md5=00801fb68bbba5958f99cdaa004bffc0CAS | 15955073PubMed |
[24] D. J. Stigers, Z. I. Watts, J. E. Hennessy, H.-K. Kim, R. Martini, M. C. Taylor, K. Ozawa, J. W. Keillor, N. E. Dixon, C. J. Easton, Chem. Commun. 2011, 47, 1839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Whtr0%3D&md5=b7a533457ce7dc6dd4ee46610096cde8CAS |
[25] D. Padmakshan, S. A. Bennett, G. Otting, C. J. Easton, Synlett 2007, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFCkurY%3D&md5=a8ae5297e8f641c812afefb1fd5027b3CAS |
[26] I. N. Arthur, J. E. Hennessy, D. Padmakshan, D. J. Stigers, S. Lesturgez, S. A. Fraser, M. Liutkus, G. Otting, J. G. Oakeshott, C. J. Easton, Chem. – Eur. J. 2013, 19, 6824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCisr4%3D&md5=98baa2d3a758fd622989666f757bb402CAS | 23536487PubMed |
[27] A. R. Goerke, J. R. Swartz, Biotechnol. Bioeng. 2009, 102, 400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmtbk%3D&md5=42695d0d2d65f05994a57e34f9f33c77CAS | 18781689PubMed |
[28] R. Furter, Protein Sci. 1998, 7, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFGhsLw%3D&md5=1038764089c27c3ac565eac587fdd803CAS | 9521119PubMed |
[29] J. C. Jackson, J. T. Hammill, R. A. Mehl, J. Am. Chem. Soc. 2007, 129, 1160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmtw%3D%3D&md5=210d6cdd551165db7dd52f2aa8a4abe6CAS | 17263397PubMed |
[30] K. Ozawa, K. V. Loscha, K. V. Kuppan, C. T. Loh, N. E. Dixon, G. Otting, Biochem. Biophys. Res. Commun. 2012, 418, 652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFaksrs%3D&md5=b143ad9f78bf629f81676e748ff2105aCAS | 22293204PubMed |
[31] S. J. Miyake-Stoner, C. A. Refakis, J. T. Hammill, H. Lusic, J. L. Hazen, A. Dieters, R. A. Mehl, Biochemistry 2010, 49, 1667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKkurY%3D&md5=7d47fd5d96ee02fd2f9bbf02d3c0da82CAS | 20082521PubMed |
[32] S. E. Cellitti, D. H. Jones, L. Lagpacan, X. Hao, Q. Zhang, H. Hu, S. M. Brittain, A. Brinker, J. Caldwell, B. Bursulaya, G. Spraggon, A. Brock, Y. Ryu, T. Uno, P. G. Schultz, B. H. Geierstanger, J. Am. Chem. Soc. 2008, 130, 9268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2ktbo%3D&md5=e0230c716019944ff1674aef01754fc2CAS | 18576636PubMed |
[33] S. Ye, A. A. Berger, D. Petzold, O. Reimann, B. Matt, B. Koksch, Beilstein J. Org. Chem. 2010, 6, No. 40.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. M. Hancock, R. Uprety, A. Dieters, J. W. Chin, J. Am. Chem. Soc. 2010, 132, 14819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GqtrzO&md5=9daa6b728272bf9fc855ccdead4e74bcCAS | 20925334PubMed |
[35] A. L. Stokes, S. J. Miyake-Stoner, J. C. Peeler, D. P. Nguyen, R. P. Hammer, R. A. Mehl, Mol. Biosyst. 2009, 5, 1032.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1KksLk%3D&md5=9a1459badcb3a7b507c83cb90b131241CAS | 19668869PubMed |
[36] B. J. Wilkins, S. Marionni, D. D. Young, J. Liu, Y. Wang, M. L. Di Salvo, A. Dieters, T. A. Cropp, Biochemistry 2010, 49, 1557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ansL0%3D&md5=9d2aeb6989b717251238a2e20dcfe4ebCAS | 20136096PubMed |
[37] M. R. Seyedsayamdost, C. S. Yee, J. Stubbe, Nat. Protoc. 2007, 2, 1225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGnurrI&md5=8abcd64ba3654b1f5151578ce3b7c1c5CAS | 17546018PubMed |
[38] M. A. Danielson, J. J. Falke, Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjslyis7w%3D&md5=48b6dc1fc20e44cce1691b4258625401CAS | 8800468PubMed |
[39] M. Salwiczek, E. K. Nyakatura, U. I. M. Gerling, S. Ye, B. Koksch, Chem. Soc. Rev. 2012, 41, 2135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlsLk%3D&md5=a86454c7d11772b03105f2502d2f0c61CAS | 22130572PubMed |
[40] B. Bilgiçer, A. Fichera, K. Kumar, J. Am. Chem. Soc. 2001, 123, 4393.
| Crossref | GoogleScholarGoogle Scholar | 11457223PubMed |
[41] Y. Tang, G. Ghirlanda, W. A. Petka, T. Nakajima, W. F. DeGrado, D. A. Tirrell, Angew. Chem. Int. Ed. 2001, 40, 1494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyrsLg%3D&md5=77514a36b5e196569ac350c61a41c515CAS |
[42] S. Son, I. C. Tanrikulu, D. A. Tirrell, ChemBioChem 2006, 7, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Kmsrw%3D&md5=cb9818d9015521793864f53c59b05ac4CAS | 16758500PubMed |
[43] H.-P. Chiu, B. Kokona, R. Fairman, R. P. Cheng, J. Am. Chem. Soc. 2009, 131, 13192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbjJ&md5=ca409cfadaea460e1995a352c399ece0CAS | 19711980PubMed |
[44] A. K. Croft, C. J. Easton, L. Radom, J. Am. Chem. Soc. 2003, 125, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2lsbg%3D&md5=f87fc2f9f80e39943957780bffafd9ffCAS | 12670233PubMed |
[45] L. M. Gottler, H.-Y. Lee, C. E. Shelburne, A. Ramamoorthy, E. N. G. Marsh, ChemBioChem 2008, 9, 370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Whsbo%3D&md5=e44284ecc9910c5cb66ca2269bad98afCAS | 18224631PubMed |
[46] H. Meng, S. T. Krishnaji, M. Beinborn, K. Kumar, J. Med. Chem. 2008, 51, 7303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu73L&md5=9ef43baf34445f83850e65b151b9da30CAS | 18950150PubMed |
[47] K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
| Crossref | GoogleScholarGoogle Scholar | 17901324PubMed |
[48] A. Natarajan, J. P. Schwans, D. Herschlag, J. Am. Chem. Soc. 2014, 136, 7643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnt1CntL0%3D&md5=fddaa21b7cd0d44393e5147e5bafd271CAS | 24787954PubMed |
[49] H. C. Taylor, D. C. Richardson, J. S. Richardson, A. Wlodawer, A. Komoriya, I. M. Chaiken, J. Mol. Biol. 1981, 149, 313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsVKjtbg%3D&md5=65ee0621f5ad8b373df0c19c0fa4b759CAS | 7310884PubMed |
[50] B. Brooks, R. S. Phillips, W. F. Benisek, Biochemistry 1998, 37, 9738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVWkurw%3D&md5=f07e370bfe3bb589c9bbfb079be76a80CAS | 9657686PubMed |
[51] H. H. Coenen, P. Kling, G. Stöcklin, J. Nucl. Med. 1989, 30, 1367.
| 1:CAS:528:DyaK3MXpslGjug%3D%3D&md5=c47fff92d6b685ec0036a1868906fc66CAS | 2787848PubMed |
[52] F. Oldach, R. Al Toma, A. Kuthning, T. Caetano, S. Mendo, N. Budisa, R. D. Süssmuth, Angew. Chem. Int. Ed. 2012, 51, 415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGkt7vO&md5=82acfb05119ea56420ca61a7d21223c5CAS |
[53] M. C. Walker, M. C. Y. Chang, Chem. Soc. Rev. 2014, in press.
| Crossref | GoogleScholarGoogle Scholar | 24776946PubMed |
[54] F. Cao, A. B. Gamble, H.-K. Kim, H. Onagi, M. J. Gresser, J. Kerr, C. J. Easton, MedChemComm 2011, 2, 760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1OntLo%3D&md5=227047cf3c0c5134c36c785bfd9a7386CAS |
[55] K. M. Morris, F. Cao, H. Onagi, T. M. Altamore, A. B. Gamble, C. J. Easton, Bioorg. Med. Chem. Lett. 2012, 22, 7015.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjsbbF&md5=8012d718d5ec6c0897b070ff8e8bc8cbCAS | 23084901PubMed |
[56] L. Merkel, N. Budisa, Org. Biomol. Chem. 2012, 10, 7241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GgsrvP&md5=ec61707aea1d97295c9e994abb075d48CAS | 22890839PubMed |
[57] E. N. G. Marsh, Acc. Chem. Res. 2014, in press.
| Crossref | GoogleScholarGoogle Scholar |