Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Synthesis and Structural Characterization of Peralkylated Triguanide Superbases

Vjekoslav Štrukil A , Edislav Lekšić B , Ernest Meštrović B and Mirjana Eckert-Maksić A C
+ Author Affiliations
- Author Affiliations

A Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.

B Pliva TAPI, Prilaz Baruna Filipovića 29, 10000 Zagreb, Croatia.

C Corresponding author. Email: mmaksic@emma.irb.hr

Australian Journal of Chemistry 67(7) 1129-1133 https://doi.org/10.1071/CH14233
Submitted: 10 April 2014  Accepted: 20 May 2014   Published: 12 June 2014

Abstract

Organic superbases derived from a peralkylated triguanide framework have been synthesized in a coupling reaction between monosubstituted guanidines and a Vilsmeier salt. Single crystal X-ray diffraction analysis of the chloride salt allowed the structural characterization of the benzyl derivative for the first time and revealed an effective delocalization of the positive charge despite significant distortion of the triguanide cation planarity. With the calculated gas phase basicity ranging from 262 to 265 kcal mol–1 and pKa values in acetonitrile between 28 and 30, these compounds have been evaluated as potential organocatalysts in the transesterification reaction of vegetable oil.


References

[1]  (a) Z. B. Maksić, B. Kovačević, R. Vianello, Chem. Rev. 2012, 112, 5240.
         | Crossref | GoogleScholarGoogle Scholar | 22857519PubMed |
         (b) Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts (Ed. T. Ishikawa) 2009 (John Wiley & Sons, Ltd: Chichester).
      (c) I. Kaljurand, I. A. Koppel, A. Kütt, E.-I. Rõõm, T. Rodima, I. Koppel, M. Mishima, I. Leito, J. Phys. Chem. A 2007, 111, 1245.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito, I. A. Koppel, J. Org. Chem. 2005, 70, 1019.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) E. D. Raczynska, M. Decouzon, J.-F. Gal, P.-C. Maria, G. Gelbard, F. Vielfaure-Joly, J. Phys. Org. Chem. 2001, 14, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Wqtg%3D%3D&md5=d334475a38ab193df2009f21c0367d6dCAS |
      (b) B. Kovačević, Z. Glasovac, Z. B. Maksić, J. Phys. Org. Chem. 2002, 15, 765.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Glasovac, B. Kovačević, E. Meštrović, M. Eckert-Maksić, Tetrahedron Lett. 2005, 46, 8733.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Glasovac, V. Štrukil, M. Eckert-Maksić, D. Schröder, M. Kaczorowska, H. Schwarz, Int. J. Mass Spectrom. 2008, 270, 39.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Eckert-Maksić, Z. Glasovac, P. Trošelj, A. Kütt, T. Rodima, I. Koppel, I. A. Koppel, Eur. J. Org. Chem. 2008, 2008, 5176.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Z. Glasovac, F. Pavošević, V. Štrukil, M. Eckert-Maksić, M. Schlangen, R. Kretschmer, Int. J. Mass Spectrom. 2013, 354–355, 113.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) V. Raab, J. Kipke, R. M. Gschwind, J. Sundermeyer, Chem. – Eur. J. 2002, 8, 1682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSgt78%3D&md5=fdd3997ef58ee20bb39677549ef4d196CAS | 11933096PubMed |
      (b) B. Kovačević, Z. B. Maksić, Chem. – Eur. J. 2002, 8, 1694.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Raab, K. Harms, J. Sundermayer, B. Kovačević, Z. B. Maksić, J. Org. Chem. 2003, 68, 8790.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Z. B. Maksić, B. Kovačević, J. Org. Chem. 2000, 65, 3303.
         | Crossref | GoogleScholarGoogle Scholar | 10843610PubMed |
      (b) B. Kovačević, Z. B. Maksić, Org. Lett. 2001, 3, 1523.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. P. Coles, P. J. Aragón-Sáez, S. H. Oakley, P. B. Hitchcock, M. G. Davidson, Z. B. Maksić, R. Vianello, I. Leito, I. Kaljurand, D. C. Apperley, J. Am. Chem. Soc. 2009, 131, 16858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleisLjL&md5=f1e48e06708c798bf193188f10304331CAS | 19874017PubMed |
      (b) A. A. Kolomeitsev, I. A. Koppel, T. Rodima, J. Barten, E. Lork, G.-V. Röschenthaler, I. Kaljurand, A. Kütt, I. Koppel, V. Mäemets, I. Leito, J. Am. Chem. Soc. 2005, 127, 17656.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) O. LeBel, T. Maris, H. Duval, J. D. Wuest, Can. J. Chem. 2005, 83, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Slt7jO&md5=3bca8341e479602b1c118c810fbee963CAS |
      (b) S. Mayer, D. M. Daigle, E. D. Brown, J. Khatri, M. G. Organ, J. Comb. Chem. 2004, 6, 776.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. R. Katritzky, S. R. Tala, A. Singh, Arcivoc 2010, viii, 76. and references therein

[7]  Z. Glasovac, P. Trošelj, I. Jušinski, D. Margetić, M. Eckert-Maksić, Synlett 2013, 24, 2540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVCruw%3D%3D&md5=00fd4f8739fb9fe0c1b9f2df13f97e62CAS |

[8]  (a) C. Möllers, J. Prigge, B. Wibbeling, R. Fröhlich, A. Brockmeyer, H. J. Schäfer, E. Schmälzlin, C. Bräuchle, K. Meerholtz, E.-U. Würthwein, Eur. J. Org. Chem. 2003, 2003, 1198.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) M. A. Phillips, British Patent 836912 1960.
         (c) B. Greener, Eur. Patent 1902059 2008.
         (d) H.-P. Leinenbach, S. Kuhn, U. Gabsdil, Eur. Patent 1748797 2007.
         (e) D. P. Jacobus, N. P. Jensen, U.S. Patent 6693217 2003.
         (f) T. C. McKenzie, G. M. Rishton, WO Patent 9208464 1992.

[9]  V. Štrukil, Z. Glasovac, I. Đilović, D. Matković-Čalogović, L. Šuman, M. Kralj, M. Eckert-Maksić, Eur. J. Org. Chem. 2012, 2012, 6785.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) T. Isobe, K. Fukuda, T. Ishikawa, J. Org. Chem. 2000, 65, 7770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVamsrs%3D&md5=d10a331e862c35fb1e69d463293aadfeCAS | 11073579PubMed |
      (b) T. Isobe, T. Ishikawa, J. Org. Chem. 1999, 64, 6984.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Isobe, T. Ishikawa, J. Org. Chem. 1999, 64, 6989.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Isobe, T. Ishikawa, J. Org. Chem. 1999, 64, 5832.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) R. A. Kunetskiy, I. Císařová, D. Šaman, I. M. Lyapkalo, Chem. – Eur. J. 2009, 15, 9477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlu7bE&md5=1a7586a6651e55c17af87542be5993ebCAS | 19655354PubMed |
      (b) K. Vazdar, R. Kunetskiy, J. Saame, K. Kaupmees, I. Leito, U. Jahn, Angew. Chem. Int. Ed. 2014, 53, 1435.. N.B. The communication was published during the preparation of this manuscript.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  V. Štrukil, I. Dilović, D. Matković-Čalogović, J. Saame, I. Leito, P. Šket, J. Plavec, M. Eckert-Maksić, New J. Chem. 2012, 36, 86.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=458dd579c441501b5cfb2169491fa764CAS |

[14]  U. Schuchardt, R. M. Vargas, G. Gelbard, J. Mol. Catal. Chem. 1995, 99, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVGgs7c%3D&md5=7cc20e058a66be7a1b739c167ac51687CAS |

[15]  M. Kawahata, K. Yamaguchi, T. Ito, T. Ishikawa, Acta Crystallogr. 2006, E62, o3301.

[16]  The parameters for Eqn 1 were evaluated from the linear relationship calculated for the test set of the 57 different nitrogen bases which span a range of ~ 40 pKa units. For details, see: Z. Glasovac, M. Eckert-Maksić, Z. B. Maksić, New J. Chem. 2009, 33, 588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOjsLw%3D&md5=4e4bbf144ec500dc2edcaaf2b8f09fbdCAS |

[17]  The ‘reduced basicity’ GB′AN(B) is calculated according to equation: GB′AN(B) = GB′gas(B) –ΔG(BH+)ANG(B)AN, where ΔG(BH+)AN and ΔG(B)AN correspond to solvation energies of the protonated and neutral base, respectively. GB′gas(B) is defined as the difference between the Gibbs energies of the neutral and protonated form and does not include the Gibbs energy of proton: GB′gas(B) = G(B) – G(BH+), where G(X) = Eel(X) + EGibbs(X) for X = B or BH+.

[18]  I. Kaljurand, T. Rodima, I. Leito, I. A. Koppel, R. Schwesinger, J. Org. Chem. 2000, 65, 6202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOrt74%3D&md5=366d37d8b18e12c01cebd6b28e97dd5bCAS | 10987960PubMed |

[19]  (a) U. Schuchardt, R. Sercheli, R. M. Vargas, J. Braz. Chem. Soc. 1998, 9, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlChtrw%3D&md5=097d79fa9155396899f0d74b7a70ba0dCAS |
         (b) M. Eckert-Maksić, Z. Glasovac, Eur. Patent 1786763 2009.

[20]  (a) N. N. Mahamuni, Y. G. Adewuyi, Energy Fuels 2009, 23, 2757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVOksrc%3D&md5=e6780d345a2f1b7442201b1e86a80b38CAS |
      (b) M. R. Islam, Y. M. Kurle, J. L. Gossage, T. J. Benson, Energy Fuels 2013, 27, 1564.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) X. Fu, C.-H. Tan, Chem. Commun. 2011, 47, 8210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslWqsbo%3D&md5=be4b069c8c2af50cef7997feac01743eCAS |
      (b) K. Fukushima, O. Coulembier, J. M. Lecuyer, H. A. Almegren, A. M. Alabdulrahman, F. D. Alsewailem, M. A. Mcneil, P. Dubois, R. M. Waymouth, H. W. Horn, J. E. Rice, J. L. Hedrick, J. Polym. Sci. Pol. Chem. 2011, 49, 1273.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02. 2004 (Gaussian Inc.: Wallingford, CT).

[23]  A. Klamt, V. Jonas, T. Buerger, J. C. W. Lohrenz, J. Phys. Chem. 1998, 102, 5074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1Srs7Y%3D&md5=5133e74854ba4e01259df13e54224452CAS |