Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The H.G. Smith Award Article: Fluorescent Analogues of NAMI-A: Synthesis, Characterisation, Fluorescent Properties, and Preliminary Biological Studies in Human Lung Cancer Cells

Sumy Antony A B , Jonathan C. Morris C , Toby D. M. Bell B , Tracey Brown D , Leone Spiccia B and Hugh H. Harris A E
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia.

B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C School of Chemistry, UNSW Australia, UNSW Sydney, NSW 2052, Australia.

D Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800, Australia.

E Corresponding author. Email: hugh.harris@adelaide.edu.au

Australian Journal of Chemistry 67(12) 1711-1717 https://doi.org/10.1071/CH14205
Submitted: 21 March 2014  Accepted: 1 May 2014   Published: 27 June 2014

Abstract

Two new fluorescent ruthenium(iii) complexes, namely 7-azaindolium trans-tetrachlorido(7-azaindole)(dimethylsulfoxide)ruthen(iii)ate (F1) and N-[histaminedihydrolium]-1,8-naphthalenecarboximidic trans-tetracholoro(dimethylsulfoxide)(N-[histaminedihydro]-1,8-naphthalenecarboximide)ruthen(iii)ate (F2) and their respective tetramethylammonium analogues (F3 and F4) are reported herein. The compounds were characterised by elemental analysis, mass spectrometry, UV-vis spectrophotometry, and fluorescence spectroscopy. Molar extinction coefficients (ϵmax) and fluorescence emission spectra were compared to evaluate the electronic properties of the synthesised fluorescent analogues, and hence their value as intracellular fluorescence probes. F3 and F4 were synthesised and characterised in order to eliminate fluorescence arising from the counter-cations in F1 and F2 and thus to obtain a fluorescence quantum yield that reflects only a contribution from the metal complex anion. Half-inhibitory concentrations (IC50) were determined for A549 cells exposed to the Ru complexes for 24 h: F3 (203 ± 26 μM) and F4 (185 ± 20 μM).


References

[1]  I. Kostova, Curr. Med. Chem. 2006, 13, 1085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslKqtbs%3D&md5=168ae43d7d1e6bd7e4b853b892ed29f0CAS | 16611086PubMed |

[2]  C. G. Hartinger, S. Zorbas-Seifried, M. A. Jakupec, B. Kynast, H. Zorbas, B. K. Keppler, J. Inorg. Biochem. 2006, 100, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCluro%3D&md5=74d807afbc0741c8f3d77ebbbc141e98CAS | 16603249PubMed |

[3]  E. Alessio, G. Mestroni, A. Bergamo, G. Sava, Curr. Top. Med. Chem. 2004, 4, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKmsbrP&md5=2b02d3aeefaa144a0d73e7f7a9167e2fCAS | 15579094PubMed |

[4]  A. Levina, A. Mitra, P. A. Lay, Metallomics 2009, 1, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWlurg%3D&md5=33bf227a618723b9e065e6cf64afc1b6CAS | 21305154PubMed |

[5]  A. Bergamo, G. Sava, Dalton Trans. 2007, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFyhs7s%3D&md5=44310f83e5ad3426ab98f54496f75b4fCAS | 17372640PubMed |

[6]  M. Galanski, V. B. Arion, M. A. Jakupec, B. K. Keppler, Curr. Pharm. Des. 2003, 9, 2078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2gu7c%3D&md5=bc4207674cbce7fd596c8acdc707855fCAS | 14529417PubMed |

[7]  A. Bergamo, G. Sava, Dalton Trans. 2011, 7817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptleqs7c%3D&md5=be4bd5fa8ccc0a447c3e760fb9470b83CAS | 21629963PubMed |

[8]  A. Bergamo, C. Gaiddon, J. H. M. Schellens, J. H. Beijnen, G. Sava, J. Inorg. Biochem. 2012, 106, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgtbfN&md5=c1e6af004fcc0fec527eacc97f07d25aCAS | 22112845PubMed |

[9]  E. Reisner, V. B. Arion, M. Fatima, C. G. da Silva, R. Lichtenecker, A. Eichinger, B. K. Keppler, V. Y. Kukushkin, A. J. L. Pombeiro, Inorg. Chem. 2004, 43, 7083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns12rt7s%3D&md5=8a320d942e7b4bf0f05853b5a67be3e4CAS | 15500346PubMed |

[10]  N. Graf, S. J. Lippard, Adv. Drug Deliv. Rev. 2012, 64, 993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1yjsbk%3D&md5=cf15ff6a699c166f67c0771d4d049f90CAS | 22289471PubMed |

[11]  M. I. Webb, C. I. Walsby, Dalton Trans. 2011, 1322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOqtA%3D%3D&md5=3528192d0cfc1fd04560a1f393e2185dCAS | 21210063PubMed |

[12]  A. Levina, J. B. Aitken, Y. Y. Gwee, Z. J. Lim, M. Liu, A. M. Singharay, P. F. Wong, P. A. Lay, Chem. Eur. J. 2013, 19, 3609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGntbo%3D&md5=969d6c86279a860d2d83df045e0c56d4CAS | 23361836PubMed |

[13]  A. A. Hummer, P. Heffeter, W. Berger, M. Filipits, D. Batchelor, G. E. Buchel, M. A. Jakupac, B. K. Keppler, A. Rompel, J. Med. Chem. 2013, 56, 1182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVamtQ%3D%3D&md5=37eeb81f08ed3f3d0ce3775de9651726CAS | 23282017PubMed |

[14]  M. Liu, Z. J. Lim, Y. Y. Gwee, A. Levina, P. A. Lay, Angew. Chem. Int. Ed. 2010, 49, 1661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVakt7o%3D&md5=fbe4a501ac1cae74e70159f09acdeb16CAS |

[15]  J. B. Aitken, S. Antony, C. M. Weekley, B. Lai, L. Spiccia, H. H. Harris, Metallomics 2012, 4, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgtrjL&md5=f5b444eea9386ee3b0a045a356f7a2d6CAS | 22907648PubMed |

[16]  S. Antony, J. B. Aitken, S. Vogt, B. Lai, T. Brown, L. Spiccia, H. H. Harris, J. Biol. Inorg. Chem. 2013, 18, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OitL7E&md5=7397c1a883c30a205a10724aa5327605CAS | 23943098PubMed |

[17]  (a) F. Zobi, B. B. Mood, P. A. Wood, F. P. A. Fabbiani, S. Parsons, P. J. Sadler, Eur J. Inorg. Chem. 2007, 2783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslyqsr8%3D&md5=2bf2ca10b50b977524e4f3a795ee000fCAS |
      (b) J. J. Fiol, A. García-Raso, F. M. Albertí, A. Tasada, M. Barceló-Oliver, A. Terrón, M. J. Prieto, V. Moreno, E. Molins, Polyhedron 2008, 27, 2851.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. P. Fricker, Dalton Trans 2007, 4903.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Groessl, E. Reisner, C. G. Hartinger, R. Eichinger, O. Semenova, A. R. Timerbaev, M. A. Jakupec, V. B. Arion, B. K. Keppler, J. Med. Chem. 2007, 50, 2185.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  O. Mazuryk, K. Kurpiewska, K. Lewinski, G. Stochel, M. Brindell, J. Inorg. Biochem. 2012, 116, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKnsLrF&md5=3470de2f04fc9aefc389d45c02a1ea59CAS | 23010324PubMed |

[19]  F. Gai, R. L. Rich, J. W. Petrich, J. Am. Chem. Soc. 1994, 116, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1ehsL8%3D&md5=4ee0bb4da11d7184d6fe173f06fd7509CAS |

[20]  W. R. Dawson, M. W. Windsor, J. Phys. Chem. 1968, 72, 3251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvFWls7Y%3D&md5=7cf05fcc91cec1d7ea0c72979b8ca46aCAS |

[21]  (a) K. Kalyanasundaram, S. M. Zakeeruddin, M. K. Nazeeruddin, Coord. Chem. Rev. 1994, 132, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1OnsL8%3D&md5=bad58c6b7e91744f80435b5b715e29b5CAS |
      (b) F. Kratz, M. Hartmann, B. K. Keppler, L. Messori, J. Biol. Chem. 1994, 269, 2581.
      (c) L. Messori, P. Orioli, D. Vullo, E. Alessio, E. Iengo, Eur. J. Biochem. 2000, 267, 1206.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. M. Nagy, C. Nardon, L. Giovagnini, L. Marchio, A. Trevisan, D. Fregona, Dalton Trans. 2011, 11885.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Delferro, L. Marchio, M. Tegoni, S. Tardito, R. Franchi-Gazzola, M. Lanfranchi, Dalton Trans. 2009, 3766.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Zhou, G. P. Robertson, J. Roovers, Inorg. Chem. 2005, 44, 8317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVylsLbM&md5=aad4ad9251e855f2f8eb8e32c35b9083CAS | 16270970PubMed |

[23]  (a) A. Egger, B. C. Losantos, I. N. Stephaneko, B. K. Keppler, Chem. Biodivers. 2008, 5, 1588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFansr%2FE&md5=82b8ddad5d0204ed398025214a2acb99CAS | 18729098PubMed |
      (b) A. Herman, J. M. Tanski, M. F. Tibbetts, C. M. Anderson, Inorg. Chem. 2008, 47, 274.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  G. Mestroni, E. Alessio, G. Sava, International Patent PCT C 07F 15/00, A61K 31/28, WO 98/00431 1998.

[25]  E. Alessio, G. Balducci, M. Calligaris, G. Costa, W. M. Attia, G. Mestroni, Inorg. Chem. 1991, 30, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXptl2qsw%3D%3D&md5=a2017d8e6e12bf53697190f7e98268acCAS |

[26]  E. Urcan, U. Haertel, M. Styllou, R. Hickel, H. Scherthan, F. Reichl, Dent. Mater. 2010, 26, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrt73P&md5=33dfe14f65806d780ae7c0147e02a7c1CAS | 19767088PubMed |