Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of Intramolecular Hydrogen Bonds on the Gas-Phase Basicity of Guanidines

Zoran Glasovac A B and Mirjana Eckert-Maksić A
+ Author Affiliations
- Author Affiliations

A Laboratory for Physical-Organic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia.

B Corresponding author. Email: glasovac@irb.hr

Australian Journal of Chemistry 67(7) 1056-1062 https://doi.org/10.1071/CH14182
Submitted: 29 March 2014  Accepted: 8 May 2014   Published: 12 June 2014

Abstract

Three series of novel trisubstituted guanidines containing at least one hydrogen bond accepting (HBA) group were modelled using B3LYP/6–311+G(2df,p)//B3LYP/6–31G(d) calculations. Their structure was modified by incorporating a variety of different HBA groups covering a wide range of hydrogen bond strengths. Calculated gas-phase basicities (GBs) ranged from 1035 to 1181 kJ mol–1 depending on the nature of the substituent. To rationalise changes in the GB, a correlation of GB against two independent variables (pKHB and σ4B) was conducted where pKHB served as the descriptor of the hydrogen bond strength and σ4B was introduced to describe changes in the GBs in the open-chain model systems, i.e. in the absence of intramolecular hydrogen bond (IMHB), caused by the electronic effect of the propyl-HBA substituent. A very good correlation of the calculated gas-phase basicities against these two independent variables was established for all three sets of the bases.


References

[1]  R. W. Alder, Chem. Rev. 1989, 89, 1215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFKltr4%3D&md5=1babc657fa358758e9b6eadff7c3eea5CAS |

[2]  D. Margetić, in Superbases for Organic Synthesis (Ed. T. Ishikawa) 2009, Ch. 2, pp. 9–48 (John Wiley and Sons, Ltd: Chichester). For the reviews on usage of superbases in organocatalysis, see also other chapters.

[3]  Z. B. Maksić, B. Kovačević, R. Vianello, Chem. Rev. 2012, 112, 5240.
         | Crossref | GoogleScholarGoogle Scholar | 22857519PubMed |

[4]  (a) M. Meot-Ner (Mautner), Chem. Rev. 2005, 105, 213.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Meot-Ner (Mautner), Chem. Rev. 2012, 112, PR22.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Sundermeyer, V. Raab, E. Gaoutchenova, U. Garrelts, N. Abacilar, K. Harms, in Activating Unreactive Substrates: The Role of Secondary Interactions (Eds C. Bolm, F. E. Hahn) 2009, Ch. 2, pp. 17–37 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[6]  R. W. Alder, P. S. Bowman, W. R. S. Steele, D. R. Winterman, Chem. Commun. 1968, 723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvVKitb8%3D&md5=f2281de68aa10097a985372489c623e3CAS |

[7]  G. Bouchoux, J.-Y. Salpin, Mass Spectrom. Rev. 2012, 31, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Glsbs%3D&md5=282bfc29bd26b0770431177678fecbbdCAS | 21773983PubMed |

[8]  E.-I. Rõõm, A. Kütt, I. Kaljurand, I. Koppel, I. Leito, I. A. Koppel, M. Mishima, K. Goto, Y. Miyahara, Chem. –Eur. J. 2007, 13, 7631.
         | Crossref | GoogleScholarGoogle Scholar | 17594707PubMed |

[9]  G. Bouchoux, D.-A. Buisson, Int. J. Mass Spectrom. 2006, 249–250, 412.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Yamdagni, P. Kebarle, J. Am. Chem. Soc. 1973, 95, 3504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlWgtrw%3D&md5=84f859be8991dcf2d8e559faf6c0b6b5CAS |

[11]  M. Meot-Ner, P. Hamlet, E. P. Hunter, F. H. Field, J. Am. Chem. Soc. 1980, 102, 6393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtVersbo%3D&md5=0dcff89cb3daac99d16934a7ae60f4faCAS |

[12]  G. Bouchoux, Mass Spectrom. Rev. 2012, 31, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Glsb0%3D&md5=7429d38458325219e8b715de97e3da58CAS | 22611554PubMed |

[13]  G. Bouchoux, S. Desaphy, S. Bourcier, C. Malosse, R. N. Biboum Bimbong, J. Phys. Chem. B 2008, 112, 3410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFegs7w%3D&md5=cc85ab3f3710e72227e5bf0f011f04acCAS | 18288831PubMed |

[14]  E. D. Raczyńska, M. Decouzon, J.-F. Gal, P.-C. Maria, G. Gelbard, F. Vielfaure-Joly, J. Phys. Org. Chem. 2001, 14, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Decouzon, J.-F. Gal, P.-C. Maria, E. D. Raczyńska, Rapid Commun. Mass Spectrom. 1993, 7, 599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslSms74%3D&md5=f99f9b862b3311dda80ea41bd5231624CAS |

[16]  B. Kovačević, Z. Glasovac, Z. B. Maksić, J. Phys. Org. Chem. 2002, 15, 765.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Z. Gattin, B. Kovačević, Z. B. Maksić, Eur. J. Org. Chem. 2005, 3206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWiurc%3D&md5=27e519c07a072730f109b562ae6be90cCAS |

[18]  M. P. Coles, P. J. Aragón-Sáez, S. H. Oakley, P. B. Hitchcock, M. G. Davidson, Z. B. Maksić, R. Vianello, I. Leito, I. Kaljurand, D. C. Apperley, J. Am. Chem. Soc. 2009, 131, 16858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleisLjL&md5=f1e48e06708c798bf193188f10304331CAS | 19874017PubMed |

[19]  Z. Glasovac, F. Pavošević, V. Štrukil, M. Eckert-Maksić, M. Schlangen, R. Kretschmer, Int. J. Mass Spectrom. 2013, 354–355, 113.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Z. Glasovac, V. Štrukil, M. Eckert-Maksić, D. Schröder, M. Kaczorowska, H. Schwarz, Int. J. Mass Spectrom. 2008, 270, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFaisg%3D%3D&md5=30d7d0cf6afbbd1f9b473622a063125cCAS |

[21]  D. Barić, I. Dragičević, B. Kovačević, J. Org. Chem. 2013, 78, 4075.
         | Crossref | GoogleScholarGoogle Scholar | 23445344PubMed |

[22]  P. Selig, Synthesis 2013, 45, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotV2htL4%3D&md5=fc2668574b0bcda0e2c848c2859201caCAS |

[23]  D. Leow, C.-H. Tan, Synlett 2010, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslyhtbc%3D&md5=7c5449c10bc0eab5cc3f4d164fd419f1CAS |

[24]  S. Grabowski, Hydrogen Bonding – New Insights 2006 (Springer: Dodrecht).

[25]  S. J. Grabowski, Chem. Rev. 2011, 111, 2597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeitr8%3D&md5=320890ffb425de5984bdcb9ab1451070CAS | 21322583PubMed |

[26]  R. W. F. Bader, Atoms in Molecules: A Quantum Theory 1997 (Oxford University Press: New York, NY).

[27]  A. J. Green, P. L. A. Popelier, J. Chem. Inf. Model. 2014, 54, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Gis7c%3D&md5=0a095572ace8ec783726fd310cb02de1CAS | 24460383PubMed |

[28]  S. J. Grabowski, J. Phys. Org. Chem. 2004, 17, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1yksQ%3D%3D&md5=00c278a49d42a8a95ea3f4f7b93df67aCAS |

[29]  S. J. Grabowski, Chem. Phys. Lett. 2001, 338, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlehsLc%3D&md5=c01e6f9c01e8d23217283606d69c3f10CAS |

[30]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=52299b0d9e8f1e932b8760cc4ffafdffCAS |

[31]  R. W. Taft, D. Gurka, L. Joris, P. von R. Schleyer, J. W. Rakshys, J. Am. Chem. Soc. 1969, 91, 4801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1Crt7g%3D&md5=5c5a6862ee575f16a63db784ea51c160CAS |

[32]  C. Laurence, J. F. Gal, Lewis Basicity and Affinity Scales: Data and Measurements 2010, Ch. 4, pp. 111–227 and the references therein (John Wiley and Sons, Ltd: Chichester).

[33]  M. H. Abraham, J. Phys. Org. Chem. 1993, 6, 660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFSqurc%3D&md5=f2780a6b289464472ca4a3705fbd58efCAS |

[34]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.02 2003 (Gaussian Inc.: Wallingford, CT).

[35]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |

[36]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |

[37]  B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVCgsL4%3D&md5=f8edae80b160b832274d0944b0498f7bCAS |

[38]  P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=5b6aaebe0235eedcc65b0c15054348b5CAS |

[39]  G. Schaftenaar, J. H. Nordik, J. Comput. Aided Mol. Des. 2000, 14, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslant7c%3D&md5=5f6a3f582d8f83abd9a1e2972adb7634CAS | 10721501PubMed |

[40]  D. B. Chesnut, L. D. Quin, J. Comput. Chem. 2004, 25, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1KktLc%3D&md5=7d8167da02a89da0bc572ad9c4d61afeCAS | 14978716PubMed |

[41]  D. B. Chesnut, A. Savin, J. Am. Chem. Soc. 1999, 121, 2335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlOltL4%3D&md5=451073fc4aa33aa641a84a7cf04f9d60CAS |

[42]  Z. Glasovac, B. Kovačević, E. Meštrović, M. Eckert-Maksić, Tetrahedron Lett. 2005, 46, 8733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2ru7rF&md5=0f1cc44c26f576802ceadf1f0906ca2bCAS |

[43]  C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1ehsLo%3D&md5=458dd579c441501b5cfb2169491fa764CAS |

[44]  K. Vazdar, R. Kunetskiy, J. Saame, K. Kaupmees, I. Leito, U. Jahn, Angew. Chem. Int. Ed. 2014, 53, 1435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaqs7bL&md5=26eaf1e53c3c20f96860ff5534df7397CAS |

[45]  R. A. L. Peerboom, L. J. de Koning, N. M. M. Nibbering, J. Am. Soc. Mass Spectrom. 1994, 5, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsl2jsLY%3D&md5=711f89529efc7e5b7a89f62c537b9d96CAS |

[46]  M. Eckert-Maksić, Z. Glasovac, J. Phys. Org. Chem. 2005, 18, 763.
         | Crossref | GoogleScholarGoogle Scholar |