Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Use of Ethyl (Benzothiazol-2-ylsulfonyl)acetate for Malonic Ester-type Syntheses of Carboxylic Acids and Esters*

Waleed M. Hussein A B and Ross P. McGeary A C
+ Author Affiliations
- Author Affiliations

A The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld 4072, Australia.

B Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, Cairo, 11795, Egypt.

C Corresponding author. Email: r.mcgeary@uq.edu.au

Australian Journal of Chemistry 67(9) 1222-1227 https://doi.org/10.1071/CH14085
Submitted: 20 February 2014  Accepted: 28 March 2014   Published: 12 May 2014

Abstract

A new methodology for the synthesis of substituted carboxylic acids is described. Alkylation of either ethyl (benzothiazol-2-ylsulfonyl)acetate or ethyl 2-(benzothiazol-2-ylsulfonyl)propionate was achieved with alkyl halides and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in dichloromethane solution. These products were then desulfinated and hydrolysed in one-pot under mild conditions to give substituted acetic acids in good-to-excellent yields.


References

[1]  M. B. Smith, J. March, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. 2007 (John Wiley & Sons, Inc.: New Jersey).

[2]  J. Cason, Org. Synth. 1958, 38, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXivVCquw%3D%3D&md5=ac075048f691c9d80e8bab422b5e822bCAS |

[3]  K. Plesniak, A. Zarecki, J. Wicha, Top. Curr. Chem. 2007, 275, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFarurc%3D&md5=93b3b48db012d83e89b3938a0286d125CAS | 23605513PubMed |

[4]  C. Aïssa, Eur. J. Org. Chem. 2009, 1831.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  P. R. Blakemore, J. Chem. Soc. Perkin Trans. 1 2002, 2563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFyru7s%3D&md5=345bf1be170cfc2726ce6ada9e1f933bCAS |

[6]  F.L. Wu, B.P. Ross, R.P. McGeary, Eur. J. Org. Chem. 2010, 2010, 1989.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. Baltas, L. Cazaux, L. Gorrichon-Guigon, P. Maroni, P. Tisnes, Tetrahedron Lett. 1985, 26, 4447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlejtLg%3D&md5=a840e7b2c54ec04d2f5684e4deb36d84CAS |

[8]  W. F. Jarvis, M. D. Hoey, A. L. Finocchio, D. C. Dittmer, J. Org. Chem. 1988, 53, 5750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSnsbs%3D&md5=af957aa548cee026bb1d379785235e42CAS |

[9]  J. A. Reuterskiöld, J. Prakt. Chem. (Leipzig) 1930, 127, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  P. R. Blakemore, D. K. H. Ho, W. M. Nap, Org. Biomol. Chem. 2005, 3, 1365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFClsb4%3D&md5=dd24a1c9cbb897f9103bff5a770b5017CAS | 15827628PubMed |

[11]  D. A. Alonso, C. Najera, M. Varea, Helv. Chim. Acta 2002, 85, 4287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFyltw%3D%3D&md5=13c52c5ef5a530301d8aedacb4973e59CAS |

[12]  K. Kuroda, Y. Maruyama, Y. Hayashi, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2009, 82, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFagtLw%3D&md5=b64dc23e89bf423422028ba3733fac98CAS |

[13]  T. Zweifel, J.-V. Naubron, H. Gruetzmacher, Angew. Chem. Int. Ed. 2009, 48, 559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kltr0%3D&md5=86781cf0f1839272fd1ded11120a3466CAS |

[14]  Y. Cohen, E. Bodner, M. Richman, M. Afri, A. A. Frimer, Chem. Phys. Lipids 2008, 155, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KlsLzP&md5=6c8dccd3984a14113f8e26edea90a728CAS | 18675263PubMed |

[15]  M. Nishizawa, H. Imagawa, H. Yamamoto, J. Sakurai, M. Oda, Preparation of trehalose compound, process for production of the compound, and immuno-stimulative agent comprising the compound, WO 2008093700 2008.

[16]  R. L. Koder, B. R. Lichtenstein, J. F. Cerda, A.-F. Miller, P. L. Dutton, Tetrahedron Lett. 2007, 48, 5517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVKgt78%3D&md5=882383a35323e15f7e339b7e4703984aCAS | 19568318PubMed |

[17]  M. H. Hyun, Y. Song, Y. J. Cho, D. H. Kim, J. Chromatogr. A 2006, 1108, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslyls7k%3D&md5=ece60c277c13f0777ed2cd69432de19fCAS | 16445923PubMed |

[18]  A. Kumagai, Y. Nagaoka, T. Obayashi, Y. Terashima, H. Tokuda, Y. Hara, T. Mukainaka, H. Nishino, H. Kuwajima, S. Uesato, Bioorg. Med. Chem. 2003, 11, 5143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Ohtbo%3D&md5=451418f4f1cebf8dc85d57b34cecb20fCAS | 14604677PubMed |

[19]  B. J. Ueberbacher, H. Griengl, H. Weber, Tetrahedron Asymmetry 2008, 19, 838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsl2qsLk%3D&md5=0785b3f97dda1b7c8e4b43fb2baca96cCAS |

[20]  Y. C. Kuo, T. Aoyama, T. Shioiri, Chem. Pharm. Bull. (Tokyo) 1982, 30, 2787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltlWgtA%3D%3D&md5=6b89950e3dbd8a58eb9671115badc7efCAS |