Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Theoretical Studies on Phosphorescent Materials: The Conjugation-Extended PtII Complexes

Ai-Hua Liang A , Fu-Quan Bai A B , Jian Wang A , Jian-Bo Ma A and Hong-Xing Zhang A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.

B Corresponding authors. Email: baifq@jlu.edu.cn; zhanghx@mail.jlu.edu.cn

Australian Journal of Chemistry 67(10) 1522-1531 https://doi.org/10.1071/CH14032
Submitted: 23 January 2014  Accepted: 2 March 2014   Published: 22 April 2014

Abstract

A theoretical study on the PtII complex A based on a dimesitylboron (BMes2)-functionalized [Pt(C^N)(acac)] (C^N = 2-phenyl-pyridyl, acac = acetylaceton) complex, as well as three conjugation-extended analogues of the methylimidazole (C*) ligand BMes2-[Pt(C^C*)(acac)] complexes BD is performed. Their theoretical geometries, electronic structures, emission properties, and the radiative decay rate constants (kr) were also investigated. The energy differences between the two highest occupied orbitals with dominant Pt d-orbital components (Δddocc) of D both at the ground and excited states are the smallest of all. Compared with B, the charge transfer in D possesses a marked trend towards the extended conjugated group, while C changed inconspicuously. The lowest-lying absorptions and the phosphorescence of them can be described as a mixed metal-to-ligand charge transfer (MLCT)/intra-ligand π→π* charge transfer (ILCT) and 3MLCT/3ILCT, respectively. The variation of charge transfer properties induced by extended conjugation and the radiative decay rate constants (kr) calculated revealed that D is a more efficient blue phosphorescence material with a 497 nm emission transition.


References

[1]  I. M. Dixon, J. P. Collin, J. P. Sauvage, L. Flamigni, S. Encinas, F. Barigelletti, Chem. Soc. Rev. 2000, 29, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWksrk%3D&md5=ea6046bdfb0d90deb2a4c3811bd41026CAS |

[2]  J. A. G. Williams, S. Develay, D. L. Rochester, L. Murphy, Coord. Chem. Rev. 2008, 252, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. You, S. Y. Park, Dalton Trans. 2009, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1eqt7Y%3D&md5=b0997584c154891b9ad1768ddb9516cfCAS | 19462644PubMed |

[4]  J. Kalinowski, V. Fattori, M. Cocchi, J. A. G. Williams, Coord. Chem. Rev. 2011, 255, 2401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLnF&md5=6c4349377ac5ef4965af59823b38644fCAS |

[5]  Y.-L. Tung, S.-W. Lee, Y. Chi, Y.-T. Tao, C.-H. Chien, Y.-M. Cheng, P.-T. Chou, S.-M. Peng, C.-S. Liu, J. Mater. Chem. 2005, 15, 460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFGitw%3D%3D&md5=80f664332317b4ba6b3106ccf60ddf47CAS |

[6]  L.-H. Chung, S.-C. Chan, W.-C. Lee, C.-Y. Wong, Inorg. Chem. 2012, 51, 8693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGiu7zO&md5=184561cf76994f261dca1d595ea2d808CAS | 22873818PubMed |

[7]  P.-T. Chou, Y. Chi, Eur. J. Inorg. Chem. 2006, 2006, 3319.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. D. Slinker, J. S. Kim, S. F. Torres, J. H. Delcamp, H. D. Abruna, R. H. Friend, G. G. Malliaras, J. Mater. Chem. 2007, 17, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12qtb%2FM&md5=bd78af3bbb76fd275c4de68a67c52acdCAS |

[9]  J. S. Swensen, E. Polikarpov, A. Von Ruden, L. Wang, L. S. Sapochak, A. B. Padmaperuma, Adv. Funct. Mater. 2011, 21, 3250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotl2ru7c%3D&md5=3d563aef6b7c67674756bc0fc1c32261CAS |

[10]  S.-C. Lo, R. E. Harding, C. P. Shipley, S. G. Stevenson, P. L. Burn, I. D. W. Samuel, J. Am. Chem. Soc. 2009, 131, 16681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2hsbc%3D&md5=92c688bea98f9c244c8c9fb4c10092ccCAS | 19919142PubMed |

[11]  X.-N. Li, Z.-J. Wu, Z.-J. Si, H.-J. Zhang, L. Zhou, X.-J. Liu, Inorg. Chem. 2009, 48, 7740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotleitrk%3D&md5=0c56af26df7dc09f7c2161e774e9e5d3CAS | 19591441PubMed |

[12]  J. Wang, F.-Q. Bai, B.-H. Xia, H.-X. Zhang, J. Phys. Chem. A 2011, 115, 11689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1aitL%2FJ&md5=b6a603d007810d1a18d175f188a66be2CAS | 21902249PubMed |

[13]  F.-Q. Bai, J. Wang, B.-H. Xia, Q.-J. Pan, H.-X. Zhang, Dalton Trans. 2012, 41, 8441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVWgtrc%3D&md5=49fbe90e716800dae79a8f9645e94245CAS | 22647850PubMed |

[14]  Q. Cao, J. Wang, Z.-S. Tian, Z.-F. Xie, F.-Q. Bai, J. Comput. Chem. 2012, 33, 1038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFyisrw%3D&md5=7be9578f5df3f891a9bc59c25a33f4f2CAS | 22354730PubMed |

[15]  T. Hajra, J. K. Bera, V. Chandrasekhar, Aust. J. Chem. 2011, 64, 561.
         | 1:CAS:528:DC%2BC3MXmvFyhsro%3D&md5=b1a9fa005b74a02d93e7cb5d3b9b40efCAS |

[16]  M. Cocchi, J. Kalinowski, V. Fattori, J. A. G. Williams, L. Murphy, Appl. Phys. Lett. 2009, 94, 073309.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  C. L. Yang, X. W. Zhang, H. You, L. Y. Zhu, L. Q. Chen, L. N. Zhu, Y. T. Tao, D. G. Ma, Z. G. Shuai, J. G. Qin, Adv. Funct. Mater. 2007, 17, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WqtLw%3D&md5=8cb73abe0d930b165bbc2fe1ba20ac83CAS |

[18]  H. L. Schläfer, G. Gliemann, Basic Principles of Ligand Field Theory 1969 (Wiley: New York, NY).

[19]  Z. B. Wang, M. G. Helander, Z. M. Hudson, J. Qiu, S. Wang, Z. H. Lu, Appl. Phys. Lett. 2011, 98, 213301.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  I. Eryazici, C. N. Moorefield, G. R. Newkome, Chem. Rev. 2008, 108, 1834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCjtbs%3D&md5=61041635dcf7bbfc43416ffee45a7c51CAS | 18543874PubMed |

[21]  M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, Coord. Chem. Rev. 2000, 208, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVSqtLg%3D&md5=6f5ccd9b5ca2edc0a210708cb2b0052aCAS |

[22]  Z. M. Hudson, C. Sun, M. G. Helander, Y.-L. Chang, Z.-H. Lu, S. Wang, Org. Lett. 2012, 14, 1700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1OitLY%3D&md5=f76b32bc13e6c07244d9c2e4ade7908dCAS | 22414237PubMed |

[23]  Z. M. Hudson, C. Sun, M. G. Helander, H. Amarne, Z.-H. Lu, S. Wang, Adv. Funct. Mater. 2010, 20, 3426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaksrbF&md5=c966c41990bf488efdd1dedece9c5d77CAS |

[24]  Y.-L. Rao, D. Schoenmakers, Y.-L. Chang, J.-S. Lu, Z.-H. Lu, Y. Kang, S. Wang, Chem. – Eur. J. 2012, 18, 11306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymsbrN&md5=fea959c0926ff58024188e29b3c9a302CAS | 22829496PubMed |

[25]  Z. Hu, Y. Wang, D. Shi, H. Tan, X. Li, L. Wang, W. Zhu, Y. Cao, Dyes Pigments 2010, 86, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSmsr0%3D&md5=ff0a84a3fc0cf90da36a2a453f698640CAS |

[26]  B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, Adv. Mater. 2002, 14, 1032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1arsLs%3D&md5=529706248c96c4df5eefd70c23760b12CAS |

[27]  J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2002, 41, 3055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVyhsLc%3D&md5=f0130cd62ec2f46d9999ad224bd1950aCAS | 12054983PubMed |

[28]  Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2010, 39, 638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wlur0%3D&md5=e43ca9b4de4b5f43b60800e79b0dad51CAS | 20111785PubMed |

[29]  J.-F. Gong, X.-H. Fan, C. Xu, J.-L. Li, Y.-J. Wu, M.-P. Song, J. Organomet. Chem. 2007, 692, 2006.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvValt74%3D&md5=dd042237b358c6ee03a240d5622beedaCAS |

[30]  M. Ghedini, T. Pugliese, M. L. Deda, N. Godbert, I. Aiello, M. Amati, S. Belviso, F. Lelj, G. Accorsi, F. Barigelletti, Dalton Trans. 2008, 4303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlyku7g%3D&md5=5c2b5b1deec109e822310273f39fcf23CAS | 18682870PubMed |

[31]  Y. Unger, D. Meyer, O. Molt, C. Schildknecht, I. Münster, G. Wagenblast, T. Strassner, Angew. Chem. Int. Ed. 2010, 49, 10214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjtL3F&md5=74ffbbfb2d301e097468d49ccbf1c1caCAS |

[32]  J. C.-H. Chan, W. H. Lam, H.-L. Wong, N. Zhu, W.-T. Wong, V. W.-W. Yam, J. Am. Chem. Soc. 2011, 133, 12690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlSmtL4%3D&md5=39b6672e7cfa03fc1ccb63cf1bd09808CAS |

[33]  A. F. Rausch, L. Murphy, J. A. G. Williams, H. Yersin, Inorg. Chem. 2012, 51, 312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCisbjK&md5=47dd3c5fecbc1de6dcc756632f548debCAS | 22129080PubMed |

[34]  A. Tronnier, N. Nischan, T. Strassner, J. Organomet. Chem. 2013, 730, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOms7w%3D&md5=66f876a2ca7dc363d7d4277891bbc2aeCAS |

[35]  Z. M. Hudson, C. Sun, M. G. Helander, Y.-L. Chang, Z.-H. Lu, S. Wang, J. Am. Chem. Soc. 2012, 134, 13930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Slsr%2FL&md5=203738ae9dff1d2cedd8440a9b0d94ccCAS | 22891995PubMed |

[36]  C.-H. Cheng, C.-H. Hsieh, K.-Y. Lu, US Patent 7 960 547 2011.

[37]  K. Nozaki, J. Chin. Chem. Soc 2006, 53, 101.
         | 1:CAS:528:DC%2BD28XjvFeitrg%3D&md5=f9635d0c7f88eacefe602dc18a061c4fCAS |

[38]  S. Obara, M. Itabashi, F. Okuda, S. Tamaki, Y. Tanabe, Y. Ishii, K. Nozaki, M. Haga, Inorg. Chem. 2006, 45, 8907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVajt7zK&md5=a5e277d62f23dd5aab8666bb91582f87CAS | 17054350PubMed |

[39]  Z. A. Siddique, Y. Yamamoto, T. Ohno, K. Nozaki, Inorg. Chem. 2003, 42, 6366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFehsb8%3D&md5=b23a34c64d657e9666c39fadf3de798dCAS | 14514312PubMed |

[40]  Q. Cao, Z.-F. Xie, J. Wang, Z.-S. Tian, F.-Q. Bai, Mol. Phys. 2012, 110, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1aisLo%3D&md5=6638359c6ec712f2317b3a550a5b60dfCAS |

[41]  A. R. G. Smith, M. J. Riley, P. L. Burn, I. R. Gentle, S. C. Lo, B. J. Powell, Inorg. Chem. 2012, 51, 2821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlOlu7Y%3D&md5=7a6ac5ccf63de57d5684ab7c0e4f5ce5CAS |

[42]  D. Escudero, B. Happ, A. Winter, M. D. Hager, U. S. Schubert, L. González, Chem. Asian J. 2012, 7, 667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyis7k%3D&md5=6658160f95c8f6be13df62a574fddc4cCAS | 22318935PubMed |

[43]  G. S.-M. Tong, C.-M. Che, Chem. – Eur. J. 2009, 15, 7225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslyjsLY%3D&md5=5c08386e239570e05e3c583f46b5b029CAS |

[44]  I. V. Khudyakov, Y. A. Serebrennikov, N. J. Turro, Chem. Rev. 1993, 93, 537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslKnug%3D%3D&md5=f66e376189d013b0b5fd243ce3321f6eCAS |

[45]  T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Adv. Mater. 2003, 15, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFyntrw%3D&md5=fae24f3eafde5f9b99b7cc9a5183c74fCAS |

[46]  F. Weinhold, C. R. Landis, Chem. Educ. Res. Pract. 2001, 2, 91.
         | 1:CAS:528:DC%2BD38XjsVymtbc%3D&md5=f346b48397c105b05b1a0ef65305e74dCAS |

[47]  G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFWgsrk%3D&md5=9302133845f688e85d2c2d5d486b1416CAS |

[48]  Y.-S. Kim, K. Hummer, G. Kresse, Phys. Rev. B 2009, 80, 035203.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGntrw%3D&md5=b9c921bd8afd93f94bd58cb9897a71eeCAS |

[50]  C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.

[51]  M. J. Frish, G. W. Truchks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomellic, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkaas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[52]  J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsVGit78%3D&md5=9c901a0bc355d641cde4cfa29b3f79c4CAS |

[54]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |

[55]  J.-L. Chen, J.-T. Hong, K.-J. Wu, W.-P. Hu, Chem. Phys. Lett. 2009, 468, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVamtw%3D%3D&md5=260e2420b3e34bf53f7a31db5139175dCAS |

[56]  M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsV2js7w%3D&md5=8072eb2b479cb0d42239bb224f6cb054CAS |

[57]  R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFygsLs%3D&md5=68eef2f884ffd291727db8d96d408d39CAS |

[58]  N. N. Matsuzawa, A. Ishitani, J. Phys. Chem. A 2001, 105, 4953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVGhtrw%3D&md5=56bbf05fc3936a05784db707614ca3f8CAS |

[59]  H. Wang, F.-Q. Bai, H. Liu, B. Bai, X. Ran, S. Qu, J. Shi, D. Xie, H.-Y. Li, M. Li, H.-X. Zhang, Phys. Chem. Chem. Phys. 2011, 13, 9697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsF2hur0%3D&md5=ebaa296669196f26973aaebce0ae8527CAS | 21487634PubMed |

[60]  W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLk%3D&md5=df430004582593a5419dea3f6e141035CAS |

[61]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLY%3D&md5=35a148f2b4313ee3701ffff32b04d627CAS |

[62]  M. Dolg, P. Pyykkö, N. Runeberg, Inorg. Chem. 1996, 35, 7450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmsl2jsrc%3D&md5=0e39866a3c58f1ec00149d94c85e4717CAS | 11666944PubMed |

[63]  V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 1997, 107, 3210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVOqt7w%3D&md5=73b66e11b9cee694ec20fd5c1b057b7fCAS |

[64]  M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkslert78%3D&md5=32dcfa74db93eba431ebbfb8dd76f63dCAS |

[65]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |

[66]  R. A. Friesner, Annu. Rev. Phys. Chem. 1991, 42, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XptFGksA%3D%3D&md5=8005c8b2711b3b687b0b0eca8f6cb712CAS | 1747190PubMed |

[67]  C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=a4e1fde0260333c84e4e82d620bda277CAS |

[68]  T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=22ae4dab8210419100fb440a3894c792CAS |