Graft Copolymers with Polyamide Backbones via Combination of Passerini Multicomponent Polymerization and Controlled Chain-growth Polymerization
Xin-Xing Deng A , Yang Cui A , Yao-Zong Wang A , Fu-Sheng Du A and Zi-Chen Li A BA Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
B Corresponding author. Email: zcli@pku.edu.cn
Australian Journal of Chemistry 67(4) 555-561 https://doi.org/10.1071/CH13450
Submitted: 29 August 2013 Accepted: 23 October 2013 Published: 5 December 2013
Abstract
We report a facile ‘grafting from’ approach to graft copolymers with polyamide backbones and controlled vinyl polymer or polyester side chains. Two polyamides with in situ-formed pendant bromide or hydroxyl groups were obtained by Passerini-based multicomponent polymerization. They were used respectively to initiate the atom-transfer radical polymerization of vinyl monomers or the ring-opening polymerization of lactones to generate two new types of graft copolymers. One of the important features of the method is that the pendant initiators are generated in situ from non-branching monomers, and they are linked to the polymer backbone by ester bonds. Therefore, the vinyl polymer side chains could be detached from the backbones, and their structures could thus be fully characterized. Moreover, multicomponent polymerization and atom-transfer radical polymerization can even be carried out in a one-pot manner.
References
[1] (a) D. W. Jenkins, S. M. Hudson, Chem. Rev. 2001, 101, 3245.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFejt70%3D&md5=ef39084654b4847dc5fe8fa8e129afd5CAS | 11840986PubMed |
(b) A. Bhattacharya, B. N. Misra, Prog. Polym. Sci. 2004, 29, 767.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Feng, Y. J. Li, D. Yang, J. H. Hu, X. H. Zhang, X. Y. Huang, Chem. Soc. Rev. 2011, 40, 1282.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. F. Zhang, A. H. E. Müller, J. Polym. Sci. A Polym. Chem. 2005, 43, 3461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVejtLk%3D&md5=bae21c13e55dd9a3fe1cb5cd46be4c2fCAS |
(b) S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 759.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Yamashita, Y. Chujo, H. Kobayashi, Y. Kawakami, Polym. Bull. 1981, 5, 361.
| 1:CAS:528:DyaL38XntF2h&md5=d03224e496b272da9a0366f3992336c6CAS |
(b) Y. Chujo, H. Kobayashi, Y. Yamashita, Polym. J. 1988, 20, 407.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D. Fournier, F. Du Prez, Macromolecules 2008, 41, 4622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Cltrw%3D&md5=621ba6f710cf59575fbc98a67930b785CAS |
(b) L. Billiet, D. Fournier, F. Du Prez, J. Polym. Sci. A Polym. Chem. 2008, 46, 6552.
| Crossref | GoogleScholarGoogle Scholar |
[5] B. Ochiai, Y. Kato, T. Endo, Macromolecules 2009, 42, 8001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GltL3I&md5=9de967388839c38ce0f84893d9fa9b72CAS |
[6] (a) K. Marchildon, Macromol. React. Eng. 2011, 5, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit12isA%3D%3D&md5=cc05947b4596e55acc52ad350f11ac9cCAS |
(b) L. Billiet, D. Fournier, F. Du Prez, Polymer 2009, 50, 3877.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Billiet, X. K. D. Hillewaere, F. E. Du Prez, Eur. Polym. J. 2012, 48, 2085.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Z. Wang, X. X. Deng, L. Li, Z. L. Li, F. S. Du, Z. C. Li, Polym. Chem. 2013, 4, 444.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Jacobi von Wangelin, H. Neumann, D. Gordes, S. Klaus, D. Strubing, M. Beller, Chem. Eur. J. 2003, 9, 4286.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. A. Peshkov, O. P. Pereshivko, E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. Bae, H. Han, S. Chang, J. Am. Chem. Soc. 2005, 127, 2038.
| Crossref | GoogleScholarGoogle Scholar |
[8] E. Tsuchida, T. Tomono, J. Polym. Sci. A Polym. Chem. 1973, 11, 723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktVGltLw%3D&md5=036445ea5a15eb24c4d011522a792604CAS |
[9] (a) M. Yoneyama, M. Kakimoto, Y. Imai, Macromolecules 1988, 21, 1908.
| 1:CAS:528:DyaL1cXktlygsLk%3D&md5=14cd2fd6bfc57b49f44338ffedfe5c2dCAS |
(b) S. Oi, K. Nemoto, S. Matsuno, Y. Inoue, Macromol. Rapid Comm. 1994, 15, 133.
(c) S. Oi, Y. Fukue, K. Nemoto, Macromolecules 1996, 29, 2694.
[10] (a) T. Yokozawa, K. Takenoya, Macromolecules 1996, 29, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVehs7Y%3D&md5=6a18ede023501701da63e544b151890eCAS |
(b) L. Niimi, K. Shiino, S. Hiraoka, T. Yokozawa, Macromolecules 2002, 35, 3490.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Niimi, S. Hiraoka, T. Yokozawa, J. Polym. Sci. A Polym. Chem. 2005, 43, 5440.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) N. Miyaki, I. Tomita, T. Endo, Macromolecules 1996, 29, 6685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1SlsLc%3D&md5=caf66dc65a94e0583cd84c5f5059378cCAS |
(b) N. Miyaki, I. Tomita, J. Kido, T. Endo, Macromolecules 1997, 30, 4504.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. K. Choi, I. Tomita, T. Endo, Macromolecules 2000, 33, 1487.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Ochiai, T. Ogihara, M. Mashiko, T. Endo, J. Am. Chem. Soc. 2009, 131, 1636.
| Crossref | GoogleScholarGoogle Scholar |
[12] E. Ihara, Y. Hara, T. Itoh, K. Inoue, Macromolecules 2011, 44, 5955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVOisbs%3D&md5=bd87cc21e481ce79a91582669aded7a2CAS |
[13] I.-H. Lee, H. Kim, T.-L. Choi, J. Am. Chem. Soc. 2013, 135, 3760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWgtbk%3D&md5=b4d485fe5155b6c2738943ae64ea9756CAS | 23452168PubMed |
[14] (a) M. Passerini, Gazz. Chim. Ital. 1921, 51, 126.
| 1:CAS:528:DyaB38XivVyh&md5=b1796e4aae1effb488da2f3a9c3a3143CAS |
(b) A. Dömling, Chem. Rev. 2006, 106, 17.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083.
| Crossref | GoogleScholarGoogle Scholar |
[15] O. Kreye, T. Toth, M. A. R. Meier, J. Am. Chem. Soc. 2011, 133, 1790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKgu7g%3D&md5=4f6fd8bdd58bc01a08e2cc48302301fcCAS | 21265532PubMed |
[16] J.-A. Jee, L. A. Spagnuolo, J. G. Rudick, Org. Lett. 2012, 14, 3292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xoslamtrc%3D&md5=82b7ff628b997c8319ab7b0ffd55e2e9CAS | 22702475PubMed |
[17] (a) X. X. Deng, L. Li, Z. L. Li, A. Lv, F. S. Du, Z. C. Li, ACS Macro Lett. 2012, 1, 1300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFektbfI&md5=80313625989b7c83cf7afd843df62058CAS |
(b) L. Li, X. W. Kan, X. X. Deng, C. C. Song, F. S. Du, Z. C. Li, J. Polym. Sci. A Polym. Chem. 2013, 51, 865.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Lv, X.-X. Deng, L. Li, Z.-L. Li, Y.-Z. Wang, F.-S. Du, Z.-C. Li, Polym. Chem. 2013, 4, 3659.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Li, A. Lv, X. X. Deng, F. S. Du, Z. C. Li, Chem. Commun. 2013, 8549.
| Crossref | GoogleScholarGoogle Scholar |
[18] M. Ciampolini, N. Nardi, Inorg. Chem. 1966, 5, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XisVygtQ%3D%3D&md5=90a017710086665042fc19c0dc221d2dCAS |
[19] S. López, F. Fernandez-Trillo, P. Midon, L. Castedo, C. Saa, J. Org. Chem. 2005, 70, 6346.
| Crossref | GoogleScholarGoogle Scholar | 16050696PubMed |
[20] Y. Xia, X. Yin, N. A. D. Burke, H. D. H. Stöver, Macromolecules 2005, 38, 5937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVylsLg%3D&md5=c91cb5279898aac020eda9f67e1ed80eCAS |