Heterogeneous Photocatalytic Discoloration/Degradation of Rhodamine B with H2O2 and Spinel Copper Ferrite Magnetic Nanoparticles
Ariadna Flores A , Karina Nesprias A B , Paula Vitale A , Julia Tasca A , Araceli Lavat A , Nora Eyler A and Adriana Cañizo A CA Engineering Faculty, CIFICEN (CONICET-UNCPBA), del Valle Avenue 5737 (B7400JWI) Olavarría, Buenos Aires, Argentina.
B Basic Sciences Department, Agronomy Faculty, UNCPBA, Azul, Buenos Aires, Argentina.
C Corresponding author. Email: acanizo@fio.unicen.edu.ar
Australian Journal of Chemistry 67(4) 609-614 https://doi.org/10.1071/CH13435
Submitted: 30 May 2013 Accepted: 18 October 2013 Published: 19 November 2013
Abstract
The discoloration/degradation of the artificial dye Rhodamine B (RhB) was investigated using advanced oxidation technologies. Aqueous solutions of RhB containing spinel copper ferrites (CuFe2O4) as a heterogeneous catalyst were exposed to UV irradiation/hydrogen peroxide. Under these experimental conditions the discoloration/degradation of RhB is strongly promoted by copper ferrites, reaching 95 % discoloration of the dye in 10 min and 97 % degradation in 200 min. The influence of the catalyst amount, H2O2 concentration, light source, and UV light intensity were studied. Optimum concentrations of H2O2 and catalyst dosage were found for the RhB degradation reaction. The catalyst had high magnetic sensitivity under an external magnetic field, which allowed its magnetic separation from water avoiding secondary pollution processes, and its recycling. A markedly synergetic effect of spinel copper ferrite and UV light irradiation was observed for the RhB discoloration/degradation with H2O2 as a green oxidant.
References
[1] S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, G. Jiang, J. Hazard. Mater. 2009, 167, 560.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Gitb4%3D&md5=865b299dcea0acdddd20b4d305dd0efcCAS | 19201085PubMed |
[2] F. H. AlHamedi, M. A. Rauf, S. S. Ashref, Desalination 2009, 239, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFantbk%3D&md5=043661c99df78f191b4a4322ecf6d30eCAS |
[3] R. Bergamini, B. M. Azevedo, E. B. Raddi de Araújo, Chem. Eng. J. 2009, 149, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslyqu7s%3D&md5=ca1dd1337fe3637efb5143caa14f2ea0CAS |
[4] T. D. Nguyen, N. H. Phan, M. H. Do, K. T. Ngo, J. Hazard. Mater. 2011, 185, 653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCks7fN&md5=9dff7f6b685493445f173ce2263dac3cCAS | 20952129PubMed |
[5] M. Jayarajan, R. Arunachalam, G. Annadurai, Asian J. Appl. Sci. 2011, 4, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1ertr4%3D&md5=9fa0631751efa38362c6a07ba6268cb8CAS |
[6] M. Anpo, Pure Appl. Chem. 2000, 72, 1265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFKqs7w%3D&md5=1d598941a61283cec658a0cc68923b1fCAS |
[7] N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, H. Tang, Ultrason. Sonochem. 2010, 17, 526.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wnsr3L&md5=f12d4d0456ae6191719ec66f64911050CAS | 19945901PubMed |
[8] S. Haji, B. Benstaali, N. Al-Bastaki, Chem. Eng. J. 2011, 168, 134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFGitLc%3D&md5=87323b514d8c5b6ddbf186de2af11e4eCAS |
[9] X. Li, Y. Hou, Q. Zhao, L. Wang, J. Colloid Interface Sci. 2011, 358, 102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCjurg%3D&md5=769c2800688d7f37123bac3973e6fb8aCAS | 21429502PubMed |
[10] T. Aarthi, G. Madras, Ind. Eng. Chem. Res. 2007, 46, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Knu7vO&md5=da46f9d9f23ff5fb58e7dd769dee20afCAS |
[11] L. Chu, J. Wang, J. Dong, H. Liu, X. Sun, Chemosphere 2012, 86, 409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVGgtw%3D%3D&md5=e5f68800175b3811207d26d047e3361eCAS | 22014660PubMed |
[12] G. Ruppert, R. Bauer, G. Heisler, J. Photochem. Photobiol. Chem. 1993, 73, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVamtrc%3D&md5=bb3ebcabf59e13ea8050c7af9b52f72dCAS |
[13] M. F. Kabir, E. Vaisman, C. H. Langford, A. Kantzas, Chem. Eng. J. 2006, 118, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFensbw%3D&md5=eb32d9b3622df1b6bb775fe077eb5f0bCAS |
[14] M. Tokumura, A. Ohta, H. T. Znad, Y. Kawase, Water Res. 2006, 40, 3775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WnsbrO&md5=5add9667c08749c7b190e4c00c9ead89CAS | 17028064PubMed |
[15] C. Guillard, J. Disdier, J. M. Herrmann, C. Lehaut, T. Chopin, S. Malato, J. Blanco, Catal. Today 1999, 54, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVWjtLg%3D&md5=4f184d3f6658e5c3eff5e28da0c7a61eCAS |
[16] J. E. Tasca, C. E. Quincoces, A. Lavat, A. M. Alvarez, M. Gloria González, Ceram. Int. 2011, 37, 803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWktbg%3D&md5=b355450dccf120c9b57df06f20ddd7b0CAS |
[17] A. Martínez-de la Cruz, S. Obregón Alfaro, Solid State Sci. 2009, 11, 829.
| Crossref | GoogleScholarGoogle Scholar |
[18] N. M. Mahmoodi, Desalination 2011, 279, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWksL%2FJ&md5=6862d736fee569ef7d2a41e191f6cc9fCAS |
[19] C. Karunakaran, S. Senthilbelan, Catal. Commun. 2005, 6, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVWkug%3D%3D&md5=338980b7cdd3ddd5275a4872f310a3e3CAS |
[20] I. Nicole, J. De Laat, M. Dore, J. P. Duguet, C. Bonnel, Water Res. 1990, 24, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVGnurw%3D&md5=e573c6537447ce03295c00ef16d64247CAS |
[21] H. J. Kuhn, S. E. Braslavsky, R. Schmidt, Pure Appl. Chem. 2004, 76, 2105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1emsL8%3D&md5=3d7a78c90b210b666a62f01dcd8438c0CAS |
[22] J. Zhong, D. Ma, H. Hhao, A. Lian, M. J. Li, S. Huang, J. Li, Cent. Eur. J. Chem. 2008, 6, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFGnu70%3D&md5=c7a44a6a26c21bf8ffb8360a2a11c7dcCAS |
[23] V. Shah, P. Verma, P. Stopka, J. Gabriel, P. Baldrian, F. Nerud, Appl. Catal. B 2003, 46, 287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVWls70%3D&md5=9ee76e057f33b7181ce91be9edb5dd8bCAS |
[24] I. A. Salem, Chemosphere 2001, 44, 1109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlynsbs%3D&md5=65dfaa90ace7fb7d43f36e0d91695d08CAS | 11513398PubMed |
[25] N. N. Fathima, R. Aravindhan, J. R. Rao, B. U. Nair, Chemosphere 2008, 70, 1146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyrtb7K&md5=faaf34b884fd551e3485a6db1de5e5d2CAS | 17727914PubMed |
[26] J. Krýsa, M. Keppert, J. Jirkovský, V. Štengl, J. Šubrt, Mater. Chem. Phys. 2004, 86, 333.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. Chun, W. Yizhong, T. Hongxiao, Chemosphere 2000, 41, 1205.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FksVKqsw%3D%3D&md5=c972a70047b448852f1160cc070b56f2CAS | 10901248PubMed |
[28] Q. Liao, J. Sun, L. Gao, Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOhtL0%3D&md5=5d6dcee50e5a3d6917c56a3de1866f18CAS |
[29] J. C. Crittenden, S. Hu, D. W. Hand, S. A. Green, Water Res. 1999, 33, 2315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVaht7w%3D&md5=1dc46184eb630761a1bebe58a8e12a37CAS |