Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Iridium(iii) Complexes Containing 1,10-Phenanthroline and Derivatives: Synthetic, Stereochemical, and Structural Studies, and their Antimicrobial Activity

Mallesh Pandrala A , Fangfei Li A , Lynne Wallace A G , Peter J. Steel B , Barry Moore II II C , Jochen Autschbach C , J. Grant Collins A G and F. Richard Keene D E F G
+ Author Affiliations
- Author Affiliations

A School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia.

B Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.

C Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.

D School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Qld 4811, Australia.

E Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Qld 4811, Australia.

F School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia.

G Corresponding authors. Email: l.wallace@adfa.edu.au; g.collins@adfa.edu.au; richard.keene@jcu.edu.au

Australian Journal of Chemistry 66(9) 1065-1073 https://doi.org/10.1071/CH13264
Submitted: 20 May 2013  Accepted: 11 June 2013   Published: 17 July 2013

Abstract

A convenient synthetic strategy is reported for the series of complexes [Ir(pp)3]3+ (where pp = phen, Me2phen and Me4phen) through the intermediacy of the appropriate [Ir(pp)2(CF3SO3)2]+ species. In the case of [Ir(phen)3]3+, the cation was resolved into its enantiomeric forms, for which the absolute configurations were determined by X-ray diffraction. The availability for the first time of the CD spectra allowed comparison with computed CD spectra. Measurement of the antimicrobial activity of the [Ir(pp)3]3+ species {and the [Ir(pp)2X2]+ (X = Cl, CF3SO3) precursors involved in their synthesis}, as well as cell uptake studies with the four bacterial strains S. aureus, methicillin-resistant S. aureus (MRSA), E. coli, and P. aeruginosa, indicated that they showed little activity compared with their Ru(ii) analogues. The results suggest that it is unfavourable for an individual metal centre with a 3+ charge to pass across the bacterial cell membrane.


References

[1]  A. Anthonysamy, S. Balasubramanian, V. Shanmugaiah, N. Mathivanan, Dalton Trans. 2008, 2136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFGhtbw%3D&md5=005b9c5bb8b58056d4deb8f9e42384c8CAS | 18398539PubMed |

[2]  K. A. Kumar, K. L. Reddy, S. Vidhisha, S. Satyanarayana, Appl. Organomet. Chem. 2009, 23, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsrzK&md5=78eee622f75a303bfd067b6136d6f1e2CAS |

[3]  R. Prabu, A. Vijayaraj, R. Suresh, R. Shenbhagaraman, V. Kaviyarasan, V. Narayanan, Spectrochim. Acta A 2011, 78, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7jvFWltw%3D%3D&md5=12fe614389ed4096f0d4bb978e5d4e0cCAS |

[4]  A. D. Richards, A. Rodger, M. J. Hannon, A. Bolhuis, Int. J. Antimicrob. Agents 2009, 33, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWqtLo%3D&md5=6091000ae00d7416b5ffd8198fdf4025CAS | 19157798PubMed |

[5]  A. Bolhuis, L. Hand, J. E. Marshall, A. D. Richards, A. Rodger, J. Aldrich-Wright, Eur. J. Pharm. Sci. 2011, 42, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFChtrc%3D&md5=5917bfa5017f1c3289cefb8b892b292fCAS | 21182937PubMed |

[6]  N. V. Kulkarni, A. Kamath, S. Budagumpi, V. K. Revankar, J. Mol. Struct. 2011, 1006, 580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyjsb7M&md5=ef939853417254f7d27ddbb7aa2e6d84CAS |

[7]  S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem. 2012, 4, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWqtb7I&md5=507b7fe9dd0e6810aad7398c7faa9402CAS |

[8]  F. Li, Y. Mulyana, M. Feterl, J. M. Warner, J. G. Collins, F. R. Keene, Dalton Trans. 2011, 40, 5032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFahtbk%3D&md5=6e7cf469abdd2a33b50dbd44cca947b8CAS | 21442118PubMed |

[9]  F. P. Dwyer, E. C. Gyarfas, W. P. Rogers, J. H. Koch, Nature 1952, 170, 190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhsFyisg%3D%3D&md5=db46713638cc7c5c0504b0f09ed3dc1aCAS | 12982853PubMed |

[10]  F. P. Dwyer, I. K. Reid, A. Shulman, G. M. Laycock, S. Dixson, Aust. J. Exp. Biol. Med. Sci. 1969, 47, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtFals70%3D&md5=c7523e6ff52a897eb3cab9355ab2c246CAS | 4307583PubMed |

[11]  N. L. Kilah, E. Meggers, Aust. J. Chem. 2012, 65, 1325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksb%2FN&md5=6971e5516b14d0ab514faadd8ed9ed6aCAS |

[12]  M. Pandrala, F. Li, M. Feterl, Y. Mulyana, J. M. Warner, L. Wallace, F. R. Keene, J. G. Collins, Dalton Trans. 2013, 42, 4686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFegt7w%3D&md5=781d685b7103320dd6cf260ec2409039CAS | 23360972PubMed |

[13]  B. Martin, G. M. Waind, J. Chem. Soc. 1958, 4284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXitFyquw%3D%3D&md5=871f25ef60bbbff18ddb445bedd32667CAS |

[14]  B. Chiswell, S. E. Livingstone, J. lnorg. Nucl. Chem. 1964, 26, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXivVOmtA%3D%3D&md5=2bfe732cd90b89df43384738c98c878cCAS |

[15]  C. M. Flynn, J. N. Demas, J. Am. Chem. Soc. 1974, 96, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXht1OlsLw%3D&md5=02b2714fb5c5b8c93fb42dd2ff28898aCAS |

[16]  N. Yoshikawa, Y. Masuda, T. Matsumura-Inoue, Chem. Lett. 2000, 29, 1206.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  N. Yoshikawa, J. Sakamoto, T. Matsumura-Inoue, H. Takashima, K. Tsukahara, N. Kanehisa, Y. Kai, Anal. Sci. 2004, 20, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVGlur0%3D&md5=7d28f43825842b4b867326754d229e42CAS | 15116974PubMed |

[18]  J. A. Smith, J. G. Collins, B. T. Patterson, F. R. Keene, Dalton Trans. 2004, 1277.
         | Crossref | GoogleScholarGoogle Scholar | 15252618PubMed |

[19]  M. Rudolph, J. Autschbach, J. Phys. Chem. A 2011, 115, 2635. and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisl2qtLg%3D&md5=46ffe50dfff48b5ce90c34d6cdf4c2ecCAS | 21375228PubMed |

[20]  L. Wallace, PhD Thesis 1991, Australian National University.

[21]  R. J. Watts, J. S. Harrington, J. Van Houten, J. Am. Chem. Soc. 1977, 99, 2179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvVahtrY%3D&md5=e5ff2ced206a84641563e35c4f8d2626CAS |

[22]  C. M. Bolinger, N. Story, B. P. Sullivan, T. J. Meyer, Inorg. Chem. 1988, 27, 4582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmsVaqtLk%3D&md5=25eb3e4db21f4f493b19dbb951c87927CAS |

[23]  B. P. Sullivan, T. J. Meyer, Chem. Comm. 1984, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXks1Crtbw%3D&md5=f1122ea4d9a0e060e6adc7ecea0551e7CAS |

[24]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS | 18156677PubMed |

[25]  H. D. Flack, Acta Crystallogr. A 1983, 39, 876.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. De Jong, Comput. Phys. Commun. 2010, 181, 1477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Cjur8%3D&md5=bed62cc5544ab94a3046d9fec2ab0e4fCAS |

[27]  J. Autschbach, ChemPhysChem 2011, 12, 3224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKrtLfM&md5=045785ea0b9c13cf7f3d26cd797d5d63CAS | 21948480PubMed |

[28]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=97159d10c93a710a41bff24098768275CAS | 10062328PubMed |

[29]  J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1Gns7o%3D&md5=55e208c7636cd1a34c89a86a4ed5a0d9CAS |

[30]  C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=04366464975ecc2b209809636fc126c1CAS |

[31]  M. Srebro, N. Govind, W. A. De Jong, J. Autschbach, J. Phys. Chem. A 2011, 115, 10930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SltrzI&md5=761aae1eb49145ca7d87622c24f441c2CAS | 21827151PubMed |

[32]  F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=89ac773261b3e4e651bbf99c23922a95CAS | 16240044PubMed |

[33]  D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12ntLo%3D&md5=12d1d450b67ac365a526711e7ccfaebeCAS |

[34]  D. Feller, J. Comput. Chem. 1996, 17, 1571.
         | 1:CAS:528:DyaK28XlslGqsL0%3D&md5=62720aad25c348a60482a49054291ce3CAS |

[35]  K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus, J. Chem. Inf. Model. 2007, 47, 1045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVCmur8%3D&md5=9ad2379bc25baf748d0a9b2d7fb9a122CAS | 17428029PubMed |

[36]  A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVSku7o%3D&md5=9bb6a36b466678effc5041172f11bbcbCAS |

[37]  Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement M100–S19 2009 (CLSI: Wayne, PA).

[38]  I. M. Dixon, J.-P. Collin, J.-P. Sauvage, L. Flamigni, S. Encinas, F. Barigelletti, Chem. Soc. Rev. 2000, 29, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWksrk%3D&md5=f1eef3a67c4599da28f3c3a964b2caf3CAS |

[39]  K. Burger, F. E. Wagner, A. Vértes, E. Bencze, J. Mink, I. Labádi, Z. Nemes-Vetéssy, J. Phys. Chem. Solids 2001, 62, 2059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFSmurk%3D&md5=d47c994ac3f5885c16949fcf2f70366aCAS |

[40]  C. Stinner, M. D. Wightman, S. O. Kelly, M. G. Hill, J. K. Barton, Inorg. Chem. 2001, 40, 5245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1OmurY%3D&md5=7d2314d9f4e585b199b61380c5ed1ad9CAS | 11559089PubMed |

[41]  A. Zalkin, D. H. Templeton, T. Ueki, Inorg. Chem. 1973, 12, 1641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkt1Cnsbs%3D&md5=4728bccb656145fc165dd9e8b699ccfcCAS |

[42]  R. M. L. Warten, L. Ohrstrom, G. J. Opiteck, M. Shang, A. G. Lappin, Inorg. Chim. Acta 1994, 225, 75.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  I. Dance, M. Scudder, J. Chem. Soc., Dalton Trans. 1998, 1341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVertbo%3D&md5=d45440ff2cdb9c826fc38ed6e34aae52CAS |

[44]  J. A. Broomhead, W. Grumley, Inorg. Chem. 1971, 10, 2002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlt1Gqtbk%3D&md5=f74ba358799f8127a9a0ead2eba40533CAS |

[45]  F. R. Keene, J. A. Smith, J. G. Collins, Coord. Chem. Rev. 2009, 253, 2021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKltLY%3D&md5=0764d8176fb1461d98256e18a024ba47CAS |

[46]  S. Graule, M. Rudolph, W. Shen, J. A. G. Williams, C. Lescop, J. Autschbach, J. Crassous, R. Réau, Chem. – Eur. J. 2010, 16, 5976.
         | 1:CAS:528:DC%2BC3cXmtlSjsb4%3D&md5=91b65ab7449efbf29b057f9ea67a0d97CAS | 20397244PubMed |

[47]  A. J. McCaffery, S. F. Mason, B. J. Norman, J. Chem. Soc. A 1969, 1428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktFOhu7o%3D&md5=8ba8bcd8f44b20d289ac683c79723ac6CAS |

[48]  B. Le Guennic, W. Hieringer, A. Goerling, J. Autschbach, J. Phys. Chem. A 2005, 109, 4836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFykurw%3D&md5=6918f646d4f82a95ba8e214129d91e67CAS | 16833828PubMed |

[49]  When the [Ir(Me4phen)2(CF3SO3)2]+ complex was dissolved in 10 % [D6]DMSO/90 % D2O, an 1H NMR study of the H2 proton of the phen ligand at room temperature showed that the complex (δ 9.077) was aquated to [Ir(Me4phen)2(OH2)2]3+ (δ 9.111) via [Ir(Me4phen)2(CF3SO3)(OH2)]2+ (δ 9.009, 9.184), such that the complex comprised >50 % of the diaqua species after 30 minutes. Other resonances showed changes consistent with this interpretation.