Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N-Heterocyclic Silylene (NHSi) Rhodium and Iridium Complexes: Synthesis, Structure, Reactivity, and Catalytic Ability

Miriam Stoelzel A , Carsten Präsang A B , Burgert Blom A and Matthias Driess A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, D-10623 Berlin, Germany.

B Current address: General and Inorganic Chemistry, Campus Dudweiler, Saarland University, Am Markt Zeile 1, 66125 Saarbrücken, Germany.

C Corresponding author. Email: matthias.driess@tu-berlin.de

Australian Journal of Chemistry 66(10) 1163-1170 https://doi.org/10.1071/CH13196
Submitted: 23 April 2013  Accepted: 14 May 2013   Published: 24 June 2013

Abstract

Reaction of the zwitterionic N-heterocyclic silylene (NHSi) 1 L′Si: (L′ = [HC(CMeNAr)(C(CH2)NAr)], Ar = 2,6-iPr2C6H3) with HCl at low temperatures affords the kinetically stable 1,4-addition product of 1, LSiCl (L = [HC(CMeNAr)2], Ar = 2,6-iPr2C6H3) (9a), which upon reaction with [Rh(Cl)cod]2 and [Ir(Cl)cod]2 (cod = 1,5-cyclooctadiene) selectively affords the NHSi complexes [L(Cl)Si:→Rh(Cl)cod] (10a) and [L(Cl)Si:→Ir(Cl)cod] (10b), respectively. The latter were employed as pre-catalysts in the catalytic reduction of amides in the presence of silanes. Remarkably, they show strikingly different activities and selectivities. While complex 10a yields selectively the C–O cleavage product, 10b affords both cleavage products (C–O and C–N). Moreover, the total conversion of the catalytic amide reduction with 10b is significantly higher than the conversion with a benchmark system [Ir(Cl)cod]2 highlighting the enhanced catalytic activity afforded by the coordination of the NHSi ligand. Introducing the hydride source Li[HBEt3] into the catalytic reactions retards the catalyst performance due to a competitive decomposition pathway. This appears to occur via a H-shift onto the cod ligand with concomitant liberation of cyclooctene, which is also presented. The different reactivity of 10a and 10b towards nucleophiles such as MeLi is also discussed. The reaction of 10a with MeLi affords an intractable array of products, while the reaction of 10b with one equivalent of MeLi selectively affords [L(Cl)Si:→Ir(CH3)cod] (14) with selective methylation at the Ir centre. The analogous reaction with two equivalents of 10b affords the double methylated product [L(CH3)Si:→Ir(CH3)cod] (15).


References

[1]  W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290.
         | 1:CAS:528:DC%2BD38Xjt1ertbY%3D&md5=694528dd8e31c4443a04091666b9d29fCAS |

[2]  R. R. Schrock, Angew. Chem. Int. Ed. 2006, 45, 3748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFCls74%3D&md5=6a8236689fe6d6a04f00106c11e3c7e6CAS |

[3]  R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFCls78%3D&md5=3387f3831f5e4ade938903007be35c51CAS |

[4]  Y. Chauvin, Angew. Chem. Int. Ed. 2006, 45, 3740.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=4d532b5b8e1dec052326aff735fcd07aCAS |

[6]  B. Blom, M. Stoelzel, M. Driess, Chem. – Eur. J. 2013, 19, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWns7vP&md5=57bfd04eef511adc266348047e8c27b2CAS | 23229274PubMed |

[7]  M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1KnurY%3D&md5=e993ae56eb24f0b9b21b7bde533069e1CAS | 16866506PubMed |

[8]  A. Meltzer, S. Inoue, C. Prasang, M. Driess, J. Am. Chem. Soc. 2010, 132, 3038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGquro%3D&md5=d40b4406fa2bc0b37bf738184838ef9dCAS | 20148586PubMed |

[9]  C. Präsang, M. Stoelzel, S. Inoue, A. Meltzer, M. Driess, Angew. Chem. Int. Ed. 2010, 49, 10002.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Jana, C. Schulzke, H. W. Roesky, J. Am. Chem. Soc. 2009, 131, 4600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlentrs%3D&md5=bb778cc58872c36e8519ee1d9abdf8cbCAS | 19296628PubMed |

[11]  S. Yao, M. Brym, C. van Wüllen, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlOrt7s%3D&md5=5614335874747d899cba737e391280a9CAS |

[12]  M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFOrsb8%3D&md5=75cba5e436e44f426da390cb8f8654f5CAS |

[13]  B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Blaser, J. Chem. Soc., Chem. Commun. 1995, 1931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1ehtrY%3D&md5=f333f89c364ae799f0cd3ad679534261CAS |

[14]  M. Stoelzel, C. Präsang, S. Inoue, S. Enthaler, M. Driess, Angew. Chem. Int. Ed. 2012, 51, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2rtLvO&md5=3b81ee769d7ec470fe3f5b4fb0f96269CAS |

[15]  S. Diez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
         | Crossref | GoogleScholarGoogle Scholar | 19588961PubMed |

[16]  K. Riener, M. P. Högerl, P. Gigler, F. E. Kühn, ACS Catal. 2012, 2, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVagurk%3D&md5=c93c80028f121e7409c21cdb5fb695deCAS |

[17]  R. Malacea, R. Poli, E. Manoury, Coord. Chem. Rev. 2010, 254, 729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SlsLbI&md5=e18be60db733f78bb4651b71b1584c00CAS |

[18]  P. C. J. Kamer, J. N. H. Reek, P. W. N. M. van Leeuwen, in Mechanisms in Homogeneous Catalysis 2005, p. 231 (Wiley-VCH: Weinheim).

[19]  R. H. Crabtree, in The Handbook of Homogeneous Hydrogenation 2008, p. 31 (Wiley-VCH: Weinheim).

[20]  R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey, D. Stalke, Chem. – Asian J. 2012, 7, 528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ymtA%3D%3D&md5=184ab15b37e71bd3c2329b94d3abeb29CAS | 22246607PubMed |

[21]  W. Wang, S. Inoue, S. Enthaler, M. Driess, Angew. Chem. Int. Ed. 2012, 51, 6167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ektr4%3D&md5=b3e02dd46c1da982a8c165727e8e42f5CAS |

[22]  E. Neumann, A. Pfaltz, Organometallics 2005, 24, 2008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Cnu7c%3D&md5=86fa8ffa45aab7f077af815254311412CAS |

[23]  A.-K. Jungton, A. Meltzer, C. Präsang, T. Braun, M. Driess, A. Penner, Dalton Trans. 2010, 39, 5436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVajsr0%3D&md5=e5a50cfa3e83305485b1d844760213a2CAS | 20445932PubMed |

[24]  A. Brück, D. Gallego, W. Wang, E. Irran, M. Driess, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 11478.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Ahmed, C. Buch, L. Routaboul, R. Jackstell, H. Klein, A. Spannenberg, M. Beller, Chem 2007, 13, 1594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVWiurY%3D&md5=f8ac7a1d0a31c14e7e95acedad028a41CAS |

[26]  A. Meltzer, 2010, Ph.D. thesis: Übergangsmetallkomplexe eines neuen ylid-artigen Silylens, Technische Universität Berlin, Berlin, Germany.

[27]  M. Aizenberg, J. Ott, C. J. Elsevier, D. Milstein, J. Organomet. Chem. 1998, 551, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1yku78%3D&md5=b3b8c9d6cd6240ad998a05f23a504772CAS |

[28]  J. Y. Corey, J. Braddock-Wilking, Chem. Rev. 1999, 99, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFWqtr4%3D&md5=78d56758c0a73b6b623db906f817592cCAS | 11848982PubMed |

[29]  G. W. Gribble, Chem. Soc. Rev. 1998, 27, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFOmtLs%3D&md5=ef3c067f36a3c2078e1ae6feb924857eCAS |

[30]  J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd edn 1997 (Wiley: New York, NY).

[31]  M. Igarashi, T. Fuchikami, Tetrahedron Lett. 2001, 42, 1945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFGitL0%3D&md5=87915230efe899dd6e7f8f6538df9115CAS |

[32]  S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFagtbo%3D&md5=7cdf5aa51d3693234f066c522615cc08CAS | 20104844PubMed |

[33]  R. Kuwano, M. Takahashi, Y. Ito, Tetrahedron Lett. 1998, 39, 1017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtF2rs78%3D&md5=11f19d569e6928ed19c34b7a3803d160CAS |

[34]  R. Goikhman, D. Milstein, Chem. – Eur. J. 2005, 11, 2983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFarsLY%3D&md5=ef8c9602dd1a329ac955f95196869c89CAS | 15761852PubMed |

[35]  N. Schneider, M. Finger, C. Haferkemper, S. Bellemin-Laponnaz, P. Hofmann, L. H. Gade, Angew. Chem. Int. Ed. 2009, 48, 1609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVais78%3D&md5=fc624e5723e07f3d80e90ea14d65f9e1CAS |

[36]  E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2010, 132, 16756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhtLfF&md5=ee5427a3ce1e5daebe63c2836a8a2337CAS | 21049928PubMed |

[37]  S. Krackl, C. I. Someya, S. Enthaler, Chem. – Eur. J. 2012, 18, 15267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1agtrbO&md5=c809e3ca38527047747749d232971aa1CAS | 23129497PubMed |

[38]  C. Cheng, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 11304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpsl2jtrc%3D&md5=c31aa9be3a444cf2e7060374ec2bccfbCAS | 22770123PubMed |

[39]  See Supplementary Material.

[40]  J. L. Herde, J. C. Lambert, C. V. Senoff, M. A. Cushing, Inorg. Synth. 2007, 15, 18.

[41]  G. M. Sheldrick, SHELX-97 Program for Crystal Structure Determination, Universität Göttingen (Germany) 1997.